OAC's Computer Cluster Facilities: Basic
Hardware and Software Configurations

Francesco Nasir

Report N. 34, released: 17/02/2014

Reviewers: A. Poddighe, I. Porceddu

Osservatorio
Astronomico
di Cagliari

Contents

1 Introduction

2 Underlying Hardware
2.1 Network topology
2.2 Clientnodes e
2.3 Server nodes e e
2.4 Chiller, coolLoop and racks

3 Storage
3.1 Fibre channel and InfiniBand
3.2 IBM storage subsystem and the Storage Server
3.3 General Parallel File System

4 Basic configuration of cluster
4.1 Setting up a management server
4.2 Network booting: pxe-dhcp-tftp-nfs
4.3 Automatic installation with kickstart L.
4.4 Secure shell host and key exchange
4.5 Local mirror.
4.6 Domain name Server e e e e
4.7 User authentication with 1dap
4.8 Access to the Internet using NAT

5 Monitoring and management tools
5.1 Intelligent Platform Management Interface.
5.2 Ganglia
5.3 pconsole and shmux,

6 Tests using MPI

Appendix

A Turn on the Cluster

B Configuring GPFS

B.1 installation L
B.2 configuration: client-server architecture
B.3 delete gpfs cluster Lo
B.4 remove GPFS software L.
B.5 configure GPFS quotas

C Extract ISO image and copy on system’s hard drive

Configure PXE booting and network installation

D.1 configure DHCP server
D.2 configure TFTP server for network booting
D.3 configure NFSserver L o

Configuration of kickstart

Configure SSH password-less access

ow o D

10
10

13
14
17
19

21
21
21
22
23
26
26
27
27

28
28
29
31

32

34

34

34
34
36
36
37
37

37

38
38
38
40

40

42

G Configure local repository
G.1 configure ftp server L
G.2 create mirror script L L

H Configure local DNS server
I Configure NAT

J IPMI configuration

K Ganglia configuration

L Configure pconsole

M Configure MPI

N Acronyms

References

42
42
43

43

45

46

47

48

49

51

53

1 Introduction

The Astronomical Observatory of Cagliari has a good deal of computing resources amongst which
an IBM! cluster that consists of 60 computing nodes, storage servers and front-ends which are
used to login into the cluster.

Before continuing with this report it is interesting to understand what a cluster is and what
it can be used for. Computer clusters may be used and implemented in many ways in order
to achieve different goals. One might implement a common services cluster for web, database
or storage applications: a web server cluster can assign queries to different nodes in order to
load-balance requests and optimize response time. Clusters may be used for high availability
or fail-over of a certain service by implementing many redundant nodes so that there is not a
single point of failure and the services are still provided if some components are not available.
In addition, clusters may be implemented for computational purposes, as in this report, in order
to distribute a scientific computation amongst many nodes reducing the runtime of a program:
some common examples of applications are climate modeling, signal processing, astronomical
and engineering simulations.

It is difficult to find an exact definition of computer cluster but some underlying characteristics
are usually present [9]:

e a great number of identical machines or nodes (homogeneous cluster);
e machines connected to one or more dedicated networks;

e common resources shared amongst nodes (e.g, the home directory exported through a
network file system like NFS or IBM’s GPFS);

e nodes that “trust” one another so that SSH or RSH login does not require passwords;

e middleware between the operating system and the applications such as MPI in order to
run code across many nodes making the whole cluster seem like one very big and powerful
computer.

Let us look at some basic concepts regarding computer clusters and why they can be useful.
Computer code can be executed sequentially on one CPU, or it can be executed in parallel by
subdividing the program across many processing units [6]. In any case, the goal is to improve
the runtime, which depends mainly on the execution time of the processing units and also on the
communication time between units (i.e., the bus and network bandwidths). Considering only
the former component, it is fair to assume that:

rt =mn; X Ne X te (1)

where 7t is runtime, n; is the number of instructions in a program, n. is the number of instruc-
tions executed every clock cycle and t. it the clock cycle time. So as t. decreased evermore, the
runtime improves, this is called “frequency scaling”. Nevertheless power p consumption increases
as well:

poc f (2)

where f = 1/t., so it is not possible to increase CPU frequency evermore, in addition to this,
other problems such as transmission speeds, costs and limits to miniaturization are also present.
To improve performance other methods, such as parallelization, must be used.

Parallelism regards both the underlying hardware support and software implementation. Par-
allel code is usually more complicated than sequential code, furthermore the performance of a

'Refer to appendix section N for meaning of various acronyms

program does not depend only on the underlying hardware (e.g., the number of CPUs) but also
on the level of parallelization of the code itself: very few programs are completely parallel, a con-
dition known as “embarrassingly parallel”. Regarding this problem Admahal’s and Gustafson’s
law indicate that the speed at which a program can be executed depends on the portion of
non-parallel code in the program. As an example, the following is Admahal’s law:

1
a+ (1—a)/np

s(npy) = (3)
where s is speed up and ny, is the number of processing units (i.e., CPUs, cores) and « is the
percentage of non-parallel or sequential code expressed in decimals. For a given «, there is a
npu after which performance increases very slowly.

The main difficulty when implementing parallel algorithms is data dependencies: there might be
some calculations performed by a subprogram, also referred to as “thread”, that depend on the
data output of another thread, in fact, no program can run more quickly than the longest chain
of dependent calculations known as “critical path”. Moreover, there are some conditions known
as Bernstein’s conditions that indicate when two threads are independent of each other (e.g.,
they do not share data between each other) and can run in parallel. If these conditions are not
satisfied, flow dependency and data dependency is introduced and some parts of code will run
sequentially. If two threads are not independent of each other they must communicate with each
other, for example, if they share the same variable the first subprocess to access the variable
must lock it in order to make it mutually exclusive, the lock is removed when the thread has
finished using that variable. If both threads could access the same data simultaneously so called
“race conditions” would be introduced and the program might not produce the correct output.
So techniques such as semaphores, barriers and synchronization must be used when dealing with
shared data. These techniques, amongst other things, are important for consistency: the result
obtained by the parallel code must be the same that would be obtained if the code were run
sequentially. On the other hand, too much communication overhead between threads might
make the program slower than it would be if it were run sequentially, this is known as “parallel
slow down”. So before applying parallelization to a certain problem one must evaluate if it is
worthwhile. From the above discussion we can state that parallel code classification may be
based on the frequency with which subprocesses, that belong to a common application, commu-
nicate with each other.

Further classification can also be given by Flynn’s taxonomy [6] where parallel applications
are divided in: single instruction single data SISD, multiple instruction single data MISD, single
instruction single data, single instruction multiple data SIMD and multiple instruction multiple
data MIMD. SIMD is also called “data parallelization” and it indicates that the same instruction
or thread is run many times on different processing units over different data sets, this type of
parallelism is used often in signal processing. While in the case of MIMD different calculations
or threads can be performed on different computational units over different data sets, this is a
fully parallel implementation also known as task parallelization.

The hardware implementation of parallelization may be realized in many ways. On the same
CPU, bit parallelization is introduced by increasing the word size of the processor (e.g., 32, 64
bit chip). Instruction parallelism or pipelining is obtained by implementing processor architec-
tures such as RISC. In order to actually run subprograms simultaneously as in the case of data
and task parallelism, many processing units are needed. In this case the main hardware issue
depends on wether the memory is shared or not. Multi-core computing consist in having one
processor with two or more Arithmetic Logic Unit ALU or cores (i.e., the part of the processor
which performs the actual calculations), in this case registers, caches and main memory are
shared. Also in the case of symmetric multiple processors SMP on one machine, main memory

is shared and communication between processors occurs through buses. In the case of distinct
nodes, memory is not shared but distributed and communication occurs through a network.

A computer clusters is made up of many nodes and memory is distributed. A famous imple-
mentation is the Beowulf cluster [11] where identical commercial desktops are connected with
a TCP/IP Ethernet local area network. A Beowulf cluster typically has one or more “master
nodes” with two NICs, a public one for user login and a private one to communicate with the
“slave nodes” on which the computations are actually performed.

Obviously on cluster nodes it is possible to have many CPUs, each of which may have many
cores, so shared and distributed memory coexist and it is up to the middleware software (e.g.,
MPI, PVM) to take care of how memory and communication between processing units occurs.
Recently GPGPUs, which are usually used for accelerated graphics, are also being used as ad-
ditional processing units for scientific or engineering calculations.

An extension of cluster computing is grid computing. The former may be imagined as a cluster
of clusters, communication between clusters occurs through a WAN, in some cases also through
the Internet. Also in this case, middleware software is used to standardize interfaces between
clusters and manage network resources (e.g., gLite, BOINC). A very famous application of grid
computing is the SETI@home project.

When techniques, such as parallelization and clustered computers, are used to greatly speed
up a program’s runtime and performance, we are in the domain of High Performance Comput-
ing HPC or supercomputing, in this case, performances that range from Tera to even tens of
Peta Floating Operations Per Second (FLOPS) can be obtained. It is fair to assume that the
number of FLOPS is given roughly by:

flops = npe x f x flops. (4)

where n,, if the number of processing units and flops. is the number of FLOPS per clock cy-
cle. So for a single machine with 2 2.5GHz quad-core CPUs, supposing that each core manages
roughly 4 floating operations per cycle, the performance would be >~ 0.1 TFLOPS. The most
powerful clusters in the world (e.g., IBM’s Sequoia, Cray’s Titan and the Chinese Tianhe2) can
produce tens of PFLOPS.

This report starts by describing the underlying hardware and network topology and moves
on to software and services configurations. The cluster will be described by using a bottom-up
approach: illustrating firstly the hardware then the firmware, basic software configurations up
to monitoring tools and the implementation of middleware. For every configuration there will
be a generic description of the service in the relative section and a accurate software installation
and configuration description in the corresponding appendix. Many acronyms will be used, in
order to understand their meanings refer to appendix N.

2 Underlying Hardware

In fig.1, a front view of the cluster is visible. It is installed in three Emerson-Knurr racks: the
first rack (left side) and the third one (third rack) contain computing nodes or slave nodes while
the second rack (the middle one) contains front-end nodes, storage servers and the disk subsys-
tem. On each rack there is a touch screen monitor through which it is possible to see front and

Figure 1: A front view of the cluster: racks, server and client nodes, switches and storage subsystem.

back rack temperatures and IP interface settings. It is not possible to change settings through
the monitors.

Furthermore, it is possible to see that on the left hand side of each rack there is a black leaver
and a green button, these are used to provide power to the computer systems which are installed
inside the racks. In the following sections a lot more hardware detail will be provided.

To learn how to switch on and off the cluster see appendix A.

2.1 Network topology

As mentioned above and as can be seen in fig.2, the cluster is confined in one big multi-rack
cabinet comprised of 3 racks, the first and the third rack contain the client nodes, also referred
to as slave or computational nodes, while the second rack contains the front-end nodes, also
referred to as master or login nodes. There are three private networks: the BMC network, the
InfiniBand one and the GbE network. The first is used for low level hardware control: turning
on or off machines, booting options and logging, the second is dedicated to storage: exporting
the home directory, while the third is used for login and communication between nodes. There
is also a backup GbE login network. In rack 2, it can be seen that one of the storage servers
connects to the IBM DS4200 disk subsystem through fibre channel with a fibre optics cable.
Logical drives are imported from the disk subsystem to the storage server and can only be seen

rack 3

Client Nodes ==y == y——"
IBM x3550 _’ _’ _’
Catalyst switch Avocdnt Catalyst Switch] Management server

2960 1Gb cyclalles Acsag 4948-10G

rack 2 \ T
\ &\

- \/‘j
public lan and
\ Internet

1BM
disk subsystem
DS4200

Server Nodes
IBM x3665

= e

== " p—"r"
1BM KvM switch IS Catalyst switch ~ Avodent Catalyst Switc
ang monitor QJlogic, 5060 1Gb cyclides Acsas 4948/10G

Infiniband
/ svitch

=
—
Dell Farce 10

Catalyst switch
/ 2960 1Gb

== p—="
é\ient Nodes _’ _’

IBM x3550 Catalyst Switch
4948-10G

v

public lan and
Internet

Infiband network

Fiber channel

secondary private lan network
primary private lan network

BMC network
77777 kvm connections (vga + usb)

public lan and Internet

Figure 2: Network Topology of the cluster, for clarity not all client nodes are shown in rack 1 and 3.

by the latter. From the storage server, by using the general parallel file system GPFS, the disk
drives are then associated to the home directory and exported through the InfiniBand network
and the Qlogic switch to all the other nodes in the cluster.

The front-ends are connected to the three private networks mentioned above and also to the pub-
lic local area network and the Internet. A user connects to his account on one of the front-ends
and then he can launch and control his code from here, the actual computation is performed on
the slave nodes.

The nodes are also connected to the keyboard video mouse KVM hardware which is located
in rack two. The nodes are daisy-chained one to the other, while the eight node in the chain
connects to the KVM switch, so each switch port corresponds to 8 nodes. The KVM monitor
and keyboard are used to access each node locally.

Finally a management node is connected to the GbE network in order to manage the whole
cluster. Services such as network booting, local repository, NAT and other services are provided
by this server.

The true IP addresses of networks and hosts are not shown but for the purpose of understanding
configurations we will suppose that:

e GbE login network : 192.168.1.0/24;

Backup GbE login network : 192.168.2.0/24;

e BMC network : 192.168.3.0/24;

Storage Infiniband network : 192.168.4.0/24;

the last octet for client nodes in each network goes from 101 to 160;

the last octet for front-end nodes in each network goes from 201 to 202;

the last octet for storage nodes in each network goes from 203 to 204;
The switches used in this cluster configuration are the following (see fig.3):
e 3 Cisco Catalyst 2960-1G (login Ethernet network);

3 Cisco Catalyst 4948-10G (login Ethernet network);

2 Avocent Cyclades ACS48 (BMC network);

1 QLogic 9080 Sylverstorm Technologies (storage-InfiniBand network);

1 Dell ForcelO (public LAN and Internet);

RACK 3 RACK 2 RACK 1 FORCE 10 (DELL)

FREE SPACE

FREE SPACE IBM DISK SUBSYSTEM DA4200
IBM X3550 NODES 21-40

STORAGE SERVER 1 IBM X3655

CISCO CATALYST 2960-1G

BMC SWITCH AVOCENT CYCLADES ACS48
BMC SWITCH AVOCENT CYCLADES ACS48

IBM KVM MONITOR/SWITCH

CISCO CATALYST 2960-1G CISCO CATALYST 2960-1G

CISCO CATALYST 4948-10G

CISCO CATALYST 4948-10G

CISCO CATALYST 4948-10G

STORAGE SERVER 2 IBM X3655

FRONT END 1 IBM X3655

FRONT END 2 IBM X3655 IBM X3550 NODES 1-20

IBM X3550 NODES 41-60

QLOGIC 9080 SYLVERSTORM
TECHNOLOGIES IB SWITCH

Figure 3: Schematic showing back view of the cluster and indicating collocation of nodes and switches.

Now we will go more into detail of each cluster hardware component.

2.2 Client nodes
Hardware: the client nodes are IBM system X3550, with the following features:

e 2 64 bit 2.5GHz quadcore Intel processors;

4 4GB RAM modules DDR3 for a total of 16GB;

2 hard disks 250 GB SATA2;

2 1GbE Broadcom Nextreme IIT NICs;

e 1 10Gb Mellanox Technologies InfiniBand interface;

e 1 BMC serial interface;

Basic features: it is also worthwhile mentioning some basic hardware features and diagnostic
tools present on the X3550 systems. In order to turn the system on and off one must press the
white button as shown in fig. 4(a). From left to right: if the green light is off, the system is
not connected to a power supply, if it blinks the system is powered but in stand by, while if it
is green the operating system is up. The next light indicates hard disk access, for example it
blinks during boot up. The next blue light is a system locater, it indicated with which machine
we are interacting in order to distinguish it from the others. Next there is an orange light with
an exclamation point, if this is on, it means that something is not working correctly.

In order to further investigate a problem it is possible to flip a small tray with the blue leaver to
the right and check the exact problem: for example, a memory access problem, a power supply
problem and so on will be indicated with an round orange light next to the current issue.

(a) front pannel (b) diagnostic tray

Figure 4: The IBM X38550 On/Off button and diagnostic lights and tray.

Boot sequence: the boot sequence starts up with the IBM BIOS, then control is given to
the RAID controller in order to correctly find the drives present on the system, after this control
is given back to the BIOS and then the operating system takes over.

The boot procedure goes through different steps, the first screen gives you the option to go to
setup mode or BIOS settings (F1), to diagnostic mode (F2) and to boot mode (F12). If no
button is pressed boot continues as normal and in the next screen the system loads the raid
controller. At this stage, by pressing CTRL+A one can enter the RAID controller setup utility
otherwise the system proceeds as normal. When the controller is loaded, it looks for raid arrays
or disk drives present on the system. If it finds two arrays followed by the word “volumes” it
means that the two drives have no raid configuration, they are just two stand alone HD which
are interfaced by the raid controller. If RAID has been configured, one might see one raid array
to which HD belongs according to various configurations (e.g., RAID1, RAID5). The system
then displays the message “BIOS installed correctly” and the operating system starts loading.
When setup mode is entered, it is possible to perform all usual BIOS settings (e.g., change boot
sequence, enable PIX), and in advanced settings it is also possible to configure the BMC (e.g.,
administrator, users and IP). The diagnostic and boot mode enable you to check logs and choose
boot medium respectively.

As mentioned previously, by pressing CTRL+A during the booting of the controller kernel then
it is possible to enter the RAID utility and configure RAID arrays. It is also possible to delete,
create, edit new arrays.

For more details look at the IBM x3665 documentation [3].

drives are found,
operating system
starts loading

Start x3550 system press FI,F2,F12 loading raid

controller
no

Fll F2 Flzl

setup mode,

configure raid

: ; check chenge boot
configure bios, . . ; array and type,
boot options, diagnostics, device on the fly Create/delete
logs ecc

and BMC arrays

Figure 5: Flow chart that shows boot sequence and possible options of IBM system X3550.

2.3 Server nodes

Hardware: The server nodes (front-ends and storage) are IBM X3665 with the following fea-
tures:

e 2 64 bit 2.5GHz quadcore Intel processors;

4 4GB RAM modules DDR3 for a total of 16GB;

2 hard disks 500 GB SATAZ2;

3 1GbE Broadcom Nextreme IIT NICs;

1 10Gb Mellanox Technologies InfiniBand interface;
e 1 BMC serial interface;
e Only for the storage server n°1: 1 Emulex fibre channel HBA with two ports;

Regarding the boot sequence and the basic features it is the same as the X3550 systems.

For more details look at the IBM x3665 documentation [2].

2.4 Chiller, coolLoop and racks

A cluster as the one described above can produce a lot of heat, especially during intensive CPU
utilization. If the ambient, motherboard and CPU temperatures exceed recommended ones, this
can cause permanent damage to the cluster nodes and/or it can represent a safety hazard.

In order for the temperatures to remain contained, the cluster is coupled to a cooling system
which in turn comprises two subunits:

e the external Emerson “chiller” which pushes cooler water towards the racks and warmer
water out of the racks through a system of pumps.

e The Emerson-Knurr “coollLoop” within the racks themselves. The racks are internally
ventilated with fans that enable air circulation, also known as N-S ventilation. The air is
cooled down by the contact with the chiller’s cool water tubes.

The chiller’s outgoing/incoming temperatures and pressures must remain constant in order to
provide correct cooling to the racks. It has been noted that the operational outgoing/incoming
water temperatures are 15°C and 27°C respectively and outgoing/incoming water pressures are
3 bar and 1 bar respectively.

As can be seen in fig.6(a), the colder water flows towards the racks through a system of pumps.

10

ELETTRICAL NETWORK cold
¢ NsiDE | Water
CHILLER
power
rack-monitoring UPS EMERSOM
CHLCRIDE
power fans power devices inside racks
emersan-knur coaklop
> RACKL
hot return
water
emersan-knurr coollaop
> RACK2
emerzan-knurr cool-laop
» RACK3
QUTSIDE
(a) Emerson-Knurr racks and cool-loop (b) Rack hardware features

Figure 6: Picture and schematics showing (a) rack power supply connectors (b) rack electrical and hy-
draulic supply provided by the UPS and by the Emerson chiller respectively.

The presence of this cold source enables the fans in the racks (fig.6(b)) to blow cool air from the
bottom front part of the rack towards the nodes. The air that has been heated by the nodes (e.g.,
35°C) is led through the laterally arranged wall openings or through the rear door to a special
air/water heat exchanger. This heat is absorbed and the air is cooled (e.g. 20-25°C). If dew-
point is reached and water droplets are produced, they are removed by the droplet separator.
The cooled air is now blown again by speed-controlled fan boxes at the front of the rack. As
the colder water in the pumps exchanges heat with the hot air it warms up too and recirculates
back to the chiller in order to be cooled down again.

Front

Air inlet

Fan plug in unit
(hot swapable)

Heat exchanger

Droplet
separator

High-
Fan Box performance
heat exchanger

Droplet separator

Chilled water
connection /
internal set of
valves.

air separationy
coldfwarm

N

/

Condensed
water tub, with
outlet
connection

Air outlet

components
(CoolCon)

Serverrack CoolLoop im ot e oSt]

(a) Emerson-Knurr racks and cool-loop (b) Rack hardware features
Figure 7: The Emerson-Knurr coolLoop (a) schematics and (b) features of the cool-loop inside the racks.

As mentioned above, the system works so that it autoconfigures the speed of the fans in order
to keep the temperatures constant. Temperature changes depend on the computational load of
the nodes and/or on how many nodes are actually turned on. The fans start at 25% of their
speed and increase proportionally to the rear temperature up to 100% at 40°C. The cooling

11

capacity is also controlled according to the cold water flow: to 20°C' at the air supply side the
valve controls water flow between 0% and 100%.

Some system settings can be seen in the touch screen in the front top-left corner of the racks.
Here settings like fan speed, front and rear temperatures and IP address settings can be observed
and one can navigate through these setting with the touch screen. It is possible to note that the
front temperature (incoming cool air) is always cooler that the rear one (return air temperature).
It is not possible to change settings from the touch screen. In order to change the default settings
it is possible to interact with the rack’s control components, namely the CoolCon web-based
software. In the current configuration one must proceed as follows:

e configure a laptop to be in the network 1.1.199.0/8;
e laptop must have Internet Explorer and Java;

e connect laptop to front top left RJ-45 connector in the racks: open cabinet on which the
monitor is installed, at the top there is the RJ-45 connector (see fig. 1);

e enter IP 1.1.199.2-4 (according to which rack you want to connect to) into browser

e the coolCon software will start, you may enter as normal user (user: xxxx; password:
xxxx) or administrator (user: xxxx ; password: xxxx); enter as admin in order to perform
changes to settings;

In order to change fan speed which is directly related to the return air temperature one must go
in the service subsection under temperature/humidity section and change the return air setting.
The supply air setting will change the water valve flow which is directly related to the supply
air temperature.

For more details look at the Emerson-Knurr documentation [7].

Main State

CGoolLosp 1
doars raar | crioke sarsar [fancpead | [dovewom |
BT Bt
_ —‘faOT _
temperature rear mains A | @i | temperatur fiont

[fna | 575 %rF
12¢ 1 imin

Figure 8: Emerson Knurr CoolLoop Software Interface

12

3 Storage

From here on, the server which manages storage and is directly attached to the disk subsystem
will be referred to as the storage manager, the storage server or the host (fig.1).

As mentioned in the introduction, another important feature of a computing cluster is the
possibility for the nodes to share resources (e.g. the /home directory). This is important
because each node should be able to read/write to the same storage area as if it were local. This
can be accomplished by using network file systems over the LAN or over a dedicated network
like in the case of a SAN. In the first case, the network, usually Ethernet technology, is used
both for communication between nodes and for storage access. In the second case, a separate
storage network is implemented and technologies such as fibre channel and InfiniBand are used.
One could also define scratch areas on each computational node and use them in order to write
the results of the computations, but this method will create differences between the nodes: some
data will be stored on one node and other data on another node. Therefore it is harder to manage
a cluster this way and it is more complicated for the user to remember where to retrieve the
outputted data. It is better to have a common storage area (e.g., the /home directory) and save
all the files and the computational results in an appropriate subdirectory.

Anyhow, the starting point is to configure a storage subsystem with many hard disks which are
aggregated in RAID arrays to form logical drives. The disk subsystem is then connected to a
storage manager through a high bandwidth connection like fibre channel. The storage manager
will view the logical drives as if they were locally attached SCSI drives.

At this point it is possible to associate a file system to the logical drives and export them through
a network file system such as NFS. When using GPFS it possible to aggregate more than one
logical drive under a common file system, making the whole available space look as if it were a
unique network shared disk which is then associated to the /home directory and exported to all
the other nodes by using a GbE networks or preferably an InfiniBand network.

The practical steps are the following:

e The storage manager, sometimes referred to as the host, must be attached to the storage
subsystem with two fibre channel connections, for the actual data transfer and a Ethernet
connection for the management. Two fibre channel connections are needed for fail-over
and flow-control.

e The storage manager must have fibre channel HBA and corresponding drivers installed
(e.g., QLogic’s “glxxxx”) so that it can “see” the disks on the storage subsystem as if they
were SCSI disks attached locally.

e The IBM System Manager Client software must also be installed on the storage manager.

e Multipathing software (e.g., device-mapper-multipathing) must be installed on the storage
server. This software is used in order for the operating system to understand that it is not
attached to two sets of identical logical disks, instead the two fibre channel wires are con-
nected to the same logical disks, therefor fail-over and fault control may be implemented.

e The storage manager configures logical drives on the disk subsystem through the System
Manager GUI and subsequently the logical drives will be seen by the server itself.

e Now it is possible to install GPFS on the storage server and on all the other nodes and
create a partition which comprises all the logical disks and associate the partition to the
/home directory which is then exported by GPFS to all the other nodes through high
speed InfiniBand connections.

13

-GPFS software,

-IBM storage management
software

-Multipathing software

-fiber channel drivers (qglogic)
-GPFS software

CISCO catalyst

2960G switch IBM X3665
Firmware e >°
csa200 e "

_A—
% — InfiniBand
QLogic 9080 .
IBM X3665 E] InfiniBand F!ber.ChanneI
storage Switch Gigabit Ethernet
manager |

-logical drive connections (fiber channel)
-inband management (fiber channel)

out-of-band
management (ethernet)

IBM DS4200
disk subsystem

(a) Diagram of the storage’s physical configuration

rH::nst based Software

I

TCPIP Nebwork
Software/Hardware

HBA Driver

ronvon |

gy Management Cperation

f::} W0 Cperafion

[Controller based Software

(b) Diagram of the storage’s software configuration, the storage
manager is referred to as the host and the disk subsystem is re-
ferred to as the controller

Figure 9: Diagrams of the storage (a) physical configuration (b) software configuration.

3.1 Fibre channel and InfiniBand

Let us start by mentioning some of the technologies which are often used when implementing a
SAN or a dedicated storage network and which were used in this report. First of, all fibre chan-

14

nel is the “de facto standard” in storage networking. It is described by a five layer stack which
takes into account the more sophisticated upper level protocols for data control and mapping
down to the physical layer protocols and standards for physical transmission. fibre channel is
very popular because it can carry any type of data (video, audio, data) over long distances (~
10km) and at very high speeds (2Gbps, 4Gbps or 8Gbps). It has low overhead, more over it is
very popular for transporting upper level protocols such as the SCSI and the IP one. In fig.10
it can be seen how the SCSI protocol runs over the FC protocol stack. Optical cables comprise
two connectors on each end which lead to two tightly linked thin cables, data flows serially in
one direction or the other. Common connector types are LC and SC and physical transmission
may occur in singlemode or multimode depending on how many optical frequencies are used.
Servers must have some sort of HBA card which is attached to the motherboard through PCI
express. The optical cable is then attached to the storage device and the HBA driver must be
installed on the server. This is a point to point topology and because of the close relationship
between fibre channel and SCSI it is as if the remote storage system is attached locally to the
server through a SCSI connection.

fibre channel can also support an arbitrated topology, where many hosts are connected between
each other forming a ring. More importantly, a fibre switched topology may implemented by
using FC switches.

Just as Ethernet NICs have a burned in MAC address, fibre channel HBA have a 64 bit WWID
or WWNN expressed in hexadecimal. Nevertheless hosts in a fibre channel switched environ-
ment do not communicate through the WWID but they send a FLOGI request to the fibre
switch in order to get a logical 24 bit source ID S_ID. The S_ID comprises a domain, an area
and a port portion. The domain is similar to the VLAN concept in Ethernet, the area is the
switch port to which the host is attached to and the port is an ID that identifies the host port.
Once the S_ID has been received, the host will send a PLOGI to the switch in order to map his
new dynamically assigned address to his WWNN. This service provided by the switch is called
fabric name service.

It is also possible to implement zoning on fibre channel switches (similar to VLAN creation on
Ethernet switches) in order to create subdomains for fibre channel hosts on the same switch.
Zoning can be based on host WWNN (soft zones) or on switch ports (hard zones).

Often more than one fibre channel cable is used to reach one storage device in order to account
for fail-over and load-balancing. In this case multipathing software must be installed on the
host, the multipathing driver will run on top of the SCSI layer so that the operating system
may detect only one logical drive (fig. 10).

In this report fibre channel was used to attach the storage server to the disk subsystem making
the storage server similar to a storage gateway for all the other nodes.

Infiniband was also used here to distribute the /home partition from the storage server to
the other nodes. InfiniBand is a new technology and similarly to the TCP /IP stack it is charac-
terized by a five level stack that goes from upper layer application services to the physical layer.
The InfiniBand adapters are known as host channel adapters HCA and target channel adapters
TCA. The HCA is directly attached to the host’s system controller and therefore to memory
and it bypasses the PCI bus, although often PCI-X is used too. On the other hand TCA is
usually placed on the storage device or disk subsystem. An important concept of InfiniBand
is that devices on an InfiniBand Network communicate as if their main memories were directly
attached, this concept is called remote direct memory access RDMA.

The IB connectors are made up by channels, for example a 4X IB connection means that it has 4
channels both in the outbound and inbound direction, each of which has a 2.5 Gbps bit rate. In
addition to this, HCA can offload the processing from the main host processor, therefor latency
is reduced.

In fig. 10, one can see how the SCSI protocol can be mapped to FC through the FCP mapping

15

Applications
Operatring system
SCSI protocol
scsi
FCP FCP SRP
iSCSI
RDMA
FC-3 FC-3
Transport
EC-2 FC-2 TCP and fabr\c
services
P
FC-1 FCoE L
Transmission
technology
FC-0 Ethernet .
+ DCB Ethernet InfiniBand

Figure 10: Layered diagram of communication protocols.

protocol or to IB through the SRP mapping protocol, furthermore communication protocols can
be intermixed such as in the case of FCoE where FC can be carried over an Ethernet physical
connection or vicecersa. In this report, IB was used at physical level, in the sense that an IP
over IB protocol was used in order to carry TPC/IP information over an IB physical network,
an IB switch was also used.

For more information on these topics see [12],[4].

Table 1: Comparison between three main storage communication technologies.

Ethernet fibre Channel InfiniBand
adaptors NIC HBA HCA/TCA
connection distance 100 m 10 km 20 m
physical connection | fibre/copper | fibre/copper fibre/copper
connection speed 1,10 Gbps 2,48 Gbps | 2.5(1X),10(4X),30(12X) Gbps

16

3.2 1IBM storage subsystem and the Storage Server

The disk subsystem DS4200 comprises 16 750GB SATA?2 disks which are in turn managed by
the subsystem controller so that RAID arrays and logical drives may be created. The disk sub-
system has dual controller and power supply for load balancing and fail-over. As can be seen in

(a) front view

Drive interfaces Enclosure ID Host interfaces Battery

Power/cooling \ Host interfaces , Enclosure ID \

Serial Controller Drive interfaces

(b) back view schematics

Figure 11: The IBM disk subsystem DS4200 (a) front view (b) back view.

fig.11(b) there are two sets of controllers and power supplies. In each controller there are two
fibre channel host ports in order to connect the storage server to the disk subsystem and two
Ethernet ports in order for the storage server or some other server to manage the disk subsys-
tem. There are also two fibre channel drive ports in order to extend the disk subsystem capacity
attaching it to an expansion unit. First of all we must connect the IBM disk subsystem DS4200
to the storage server with two fibre channel connectors, the storage server has one HBA with
two ports and the appropriate drivers installed accordingly to the hardware manufacture (e.g.,
“QLogic’s qlxxxx”). The DS4200 must be connected to the storage server with two Ethernet
cables for out-of-band management.

The next step is to install the “IBM system storage DS storage manager 10” software on the
storage manager, in particular the SMClient component must be installed for out-of-band man-
agement (Ethernet), in the case of in-band management also SMAgent component must be
installed. Once this is done, one can open the graphical interface in order to manage the sub-
system with the Ethernet connection (fig. 9(b)). There are two basic windows: the Enterprise
Management Window EMW to discover and select all possible IBM disk subsystems available
and the Subsystem Management Window SMW used to manage a specific disk subsystem.
Once you have automatically discovered or manually added the disk subsystem (the default IP

17

address for the subsystem is usually 192.168.128.101-102) then you can start configuring arrays,
logical drives and determine which hosts are allowed access to the logical drives. On the SMW
you have basically 6 environments: summary, logical, physical, mappings and support; their
functionalities are self explanatory.

It is time to create a logical drive and assign it to a host or a group of hosts. One must go
to the “Logical” tab to view the unused raw capacity on the subsystem, the logical drive icon
can be selected and configured through the wizard. First of all one must create a RAID array
by choosing the RAID level and the number of physical drives that will be included. Once the
RAID array has been created you can “carve” out of the array logical drives, to do so, select the
array and label the logical drive. Now the LUN corresponding to the new logical drive must be
mapped to the host or server that will be able to access that logical drive.

In the case of this report, the 16 750GB drives were grouped in RAID arrays of 4+1 disks
each using RAID level 5 which supports the failure of one disk. Consequently a logical drive of
roughly the same raw capacity was carved out of each RAID array, therefore three logical drives
are present. One disk in the DS4200 is kept as hot swappable in the case that any other disk
fails and this accounts for the 16 disks present in the DS4200 subsystem.

Some further considerations include setting a password in order to manage the subsystem on the
SMW. In addition to this it is important to set controller ownership: determine which controller
is the primary controller and which is the back-up one.

i) 1BM System Storage DS Storage Manager 10 (Enterprise Management)

Edit View Tooks Help
| @ Bl B %
=2

= Mame | Type| Status Network Management Type | Commert |
= EEJOut-of-Band Storage Subsystems Perf4702 B Comma Out-of-Band

- storags Subsystem Perf4702 TPC4700) Nesds Attention Out-of-Band

______ ©)5torage subsystem TRC4700 TIAM4702 &) optimal Out-of-Band

------) 5torage Subsystem TIAMA702

° iAutomat\c discovery completed. Found 3 manageable devices l

Figure 12: Storage Management Software.

Finally it is interesting to note that on the EMW it is possible to monitor the status of any
discovered subsystem. If the subsystem is in healthy state then the status notification is green
an no intervention is needed, if the subsystem needs attention then there will be an orange or
red light according to the level of danger. In the latter case, something is wrong and it must be
solved by using “Recovery Guru”, which is the recovery wizard.

On the storage or metadata server we must install the drivers related to the fibre channel
HBA, the Storage Manager 10 software components, and the multipathing drivers. Regarding
the latter, if such driver is not installed and configured, the storage server will see two sets of
drives of the same capacity. For example if we have configured on the disk subsystem 3 logical
drives the operating system on the storage server will detect 6 logical drives because it has two
fibre channel connections to the same subsystem. In order for the storage server’s operating
system to access the same LUNs via multiple paths, a multipathing driver is needed. This is
useful also to implement load-balancing and fail-over. The multipathing layer sits above the FC

18

protocol, and determines whether or not the devices discovered on the target, represent separate
devices or whether they are just separate paths to the same device. On Redhat based system
the components used for this type of application are usually:

e device-mapper is the kernelspace device mapper DM which implements multipathing;
e multipath-tool is the userspace package.

To determine which SCSI devices/paths correspond to the same LUN, the DM initiates a SCSI
Inquiry. The inquiry response, among other things, carries the LUN serial number. Regardless
of the number paths a LUN is associated with, the serial number for the LUN will always be the
same. This is how multipathing SW determines which and how many paths are associated with
each LUN. Usually on Redhat based systems the package “device-mapper-multipath” comprises
user and kernel modules.

If you are using a storage subsystem that is automatically detected, no further configuration of
the multipath-tools is required. Otherwise you need to create /etc/multipath.conf and add an
appropriate device entry for your storage subsystem.

Once the system is restarted and the multipath daemon “multipathd” is running you will see
on the storage server three logical drives usually indicated with the dm-x nomenclature.

For more information see [10] and [4].

3.3 General Parallel File System

The storage server can now see the logical drives (e.g. dm-0, dm-1) as if they were locally
attached. It is time to use a network file system, in this case GPFS, to aggregate the logical
drives in order to form one big network shared disk under a common file system, which is then
associated to a particular partition, usually the /home directory, and is then exported to all the
other nodes.

The General Parallel File System GPFS is named this way for the following reasons: it is
general in the sense that is supports a wide range of applications and configurations. It is
parallel because data and metadata flows between all nodes and all disks in parallel. It is a
file system because it maps and determines how data is written and retrieved from a storage
media. As mentioned above, the objective is to export a common network shared disk to other
nodes on the same network. In Unix/Linux systems NFS is often used for this task, nevertheless
GPFS offers some added features, above all the fact that each node that belongs to the GPFS
cluster may be a storage client and server simultaneously and the network shared disk may
be distributed across many nodes so that no bottlenecks are created. Secondly file access is
parallel and it is performed through GPFS multithreading capability: each block is accessed by
a different thread. The GPFS daemon “mmfsd” runs symmetrically on each node. With GPFS
it is also possible to aggregate many logical drives under one file system, in other words one
unique storage partition may be created out of many logical drives.

In actuality, we implemented GPFS with respect to a client/server architecture similar to the
one shown in fig. 13(a), but instead of a Ethernet LAN we have a dedicated storage InifiniBand
network. The architecture in fig.13(b), is expensive to implement because each node must have
a HBA, it is also harder to manage. Nevertheless, even under a client/server architecture, one
can still use GPFS’ managing utilities, which are designed for a clustered environment, and also
its multithreading and parallel functionalities.

In GPFS one must define the management and quorum node, the rest are client nodes. Usually
the management node is the one on which the GPFS cluster is defined and implemented, while
the quorum node is usually the one directly attached to the storage subsystem. These two roles
may coincide, and there may be redundant management nodes. It is important to note that for
a GPFS cluster to work the management nodes must be up and running and at least half+1 of

19

L1l

| SAN Fabric |

Yy
Storage Controller

Al A3 A5 AT

A2 A4 Ab A8

(a) NFS client/server architecture

| LAN Fabric |

1 . 2 . 3 . 4 5 6 . 7 .. a8 .
client client client client client client client client
server server server server server server server server

disk drawer disk drawer disk drawer disk drawer
(O00ONCOCO00oooo; |CoOnoCooDoOfonoo (OO0O0COCOO0MNOO) |OrOmooCoooomoonD

(b) GPFS SAN architecture

Figure 13: Comparison between different network file system typical architectures/topologies.

the quorum nodes must be up and running. Furthermore it is important to remember that one
node may belong to only one GPFS cluster at a time.

For more information on GPFS theory see [1], for information on how to configure GPFS see
appendix B.

20

4 Basic configuration of cluster

When the hardware configurations have been dealt with, the cluster is inserted in racks which
provide sufficient cooling, the network connections have been performed, BIOS has been config-
ured, a common storage area has been defined, then it is possible to go to the next level. The
operating systems must be installed on the nodes and basic services must be provided.

4.1 Setting up a management server

It is useful to have a dedicated management server that deals with all the services that will be
provided to the client and server nodes. The management node in our case is connected to the
cluster via the 1 GbE LAN as can be seen in fig. 2.

The management node has the same operating system as the nodes: Scientific Linux 6.2
(https://www.scientificlinux.org/), it has two 1 GbE cards: one for the cluster private LAN
and one attached to the public LAN and the Internet.

One of the most important services, that the management server must provide, is the possibility
of installing and configuring the nodes’ operating system remotely, via network, and configuring
it automatically via kickstart. To enable the former service, we must first install a DHCP, a
TFTP, a NFS server on the management node. It is important to gain all the MAC addresses
of the cluster nodes in order to implement static DHCP between MAC addresses and IPs that
we want to assign. In addition to this we must create a directory on the NFS exported directory
that contains the contents of a specific operating system ISO image, go to appendix C for details.
Finally, when the operating systems have been installed, the management server can provide
many useful services to the nodes, such as a local package repository, a DNS server, a gateway
to the Internet and so on.

4.2 Network booting: pxe-dhcp-tftp-nfs

Manually installing an operating system on many systems is difficult and time consuming, be-
sides it is hard to configure and install the OS in the exact same way on every node. An
automatic procedure must be used: firstly the nodes must be able to install the OS remotely
from the management server, secondly there must be a way for the installation and configuration
procedure to occur automatically.

In order to network boot the nodes the first step is to configure their BIOS so that Preboot
Execution Environment PXE booting is possible, in other words, one or more Ethernet cards
with PXE functionality present on the node, must have the ability of searching for the boot-
loader and other boot mediums on a server on the network. On the management node a DHCP,
TFTP and a NFS server must be configured, in alternative to the NFS server, one can use also
FTP or HTTP. For security and higher control, static DHCP is implemented: the nodes’ MAC
addresses are statically associated to the node’s IP addresses.

After the node is started, the control passes from the BIOS to the PXE enabled NIC. The first
thing that PXE does is search for a DHCP server in order to acquire an IP addresses and use
the network itself (fig. 15). The DHCP must also be able to indicate where the bootloader
(pxelinux.0) is found. Usually the bootloader is under a specific TFTP server directory on the
management server itself. Associated to the bootloader, there is a bootloader file, which is usu-
ally named “default”, it may also be named with the IP address in hexadecimal assigned by the
DHCP to the node. This file tells the system where to find the kernel and the ramdisk image,
which are also stored on the TFTP server. The bootloader file may also specify the static IP
address that must be assigned to the image or it may tell the kernel to perform a new search for
a DHCP server in order to get a dynamically assigned IP address. The bootloader file can also
tell the kernel if and where to load the complete operating system and whether the installation
is automatic or manual.

21

Supposing the kernel image has been loaded successfully in the node’s ram and it has also ob-
tained an IP address (usually the same as the one used for PXE booting), now the kernel image
looks for the NFS exported folder where the ISO image of the wanted distribution has been
extracted. The kernel knows where to look due to the information written in the bootloader
file. At this point it starts loading the complete operating system and if no automatic method
is specified in the bootloader file then it needs human interaction else it performs the OS instal-
lation by itself and it may also perform pre and post installation configurations such as editing
configuration files, adding users and shutting on or off services. In fig.15, the network booting

Mode with pxe

enabled MIC management node

with dhep, tftp and nfs
server

PXE MIC searches network for dhcp senver

>
-~
rmanagement server repplies and offers node an ip address
< and it tells node where to get the bootloader from, usually the management node itself
stagel:
pxe
bootloader the node requests the bootloader (pxelinux.0) from the tftp server (e.g. jtftpboot/pxelinux.0)
-~
the bootloader is downloaded together with the bootloader file (e.g. ftftpboot/pxelinux.cfg/default)
dl
-
the nodes requests the kernel image (vmlinuz) and the ramdisk (initrd) from the
tftp server in the location indicated by the bootloader file (e.g. jftftpbootf/imagesfvmlinuz)
Ll
stage 2.
Ioaging > images are downloaded and installed in ram
-
the
kernel : - L : P
image if kernel has no static ip address (indicated in the bootloader file) it will send a dhep request
»~
< the node will receive an ip address , usually the one it had during phase 1
the node will now start installing the complete operating system from the NFS
stage 3: exported directory, as indicated in the bootloader file (e.g. jexport/0S) -
loading and »
installing
the complete installation starts, if no options where specified in the bootloader, installation will be
0s . manual otherwise it will be automatic by using a file (e.g. fexport/OS/ks/configuration ks)
-

Figure 14: Network booting procedure using PXE enabled NIC on client node and DHCP, TFTP and
NFS services on the management node.

procedure is shown, the last stage depends on the options specified in the bootloader file: we
must decide whether to install the OS manually or automatically. For a cluster environment the
latter option is mandatory in order to speed up cluster configuration greatly. For further details
go to the appendix D.

4.3 Automatic installation with kickstart

There are many methods used for automatically installing an operating system, the one chosen
here is the Kickstart method. This simply means that the installation is performed automatically

22

following the directives written in a kickstart script file. As mentioned before, the kernel knows
that it will use this method and where to look for the file due to the information written in the
bootloader file in the TFTP server.

Usually Red-Hat based operating systems such as Scientific Linux and CentOS have a utility
called Anaconda which upon installation creates a kickstart file in which the current installation
instructions are written, this file is saved in the /root directory as “anaconda-ks.cfg”. One may
use this file as a baseline and edit it for more complex automatic installations.

The basic instructions in the kickstart file regard: boot media, language, keyboard layout,
network parameters, root password, timezone, partitions, packages that must be installed and
soon. A fine grained installation is therefor possible; in summary, the first section of the kickstart
file regards basic configuration, the second part regards partitions, the third regards packages
that will be installed. In this part it is possible to install package suites or single packages.

At the end of the kickstart file one can edit a post installation section which takes place after
the basic installation. In the post sections the kickstart file is just like a script file. It is possible
to indicate what services to start and stop, set the default run level, configure the repository
files. One can also configure the network interfaces: both Ethernet and also other technologies
such as InfiniBand. You may mount a directory containing configuration files from a NFS
server and copy them to the appropriate locations on the node. It is possible to install software
from the mounted directory too, such as packages which are not readily available from the ISO
distribution.

In other words, anything that can be done with a bash script may be also performed in the post
section of a kickstart file. In appendix E there will be an example of a custom kickstart file.
It is important to state that the kickstart configuration for the client nodes will probably be

Root Directory

v

jtftpboot: bootloader
pxelinux.0 file / \ fexport
/ \
{ 1
v v l\ Y ,.' ¥ y ¥
Jpxelinux.cfg: . i fdhcp: contains file / oS:complete
pottsiette, || ozmima | J N fgicaima |/ [aerguratan | [ossoe] [ORES
sometimes named : \ points to bootloader/ for nodes
default
efau ~—

— —

DHCP SERVER }!(s: default ks
file
TETP SERVER (—_//

\ > NFSsERVER

Figure 15: A diagram showing where folders and files of the wvarious services are kept, including the
kickstart file. The figure also shows how various service point to one another during network booting and
installation of an operating system.

different from the storage and front-end nodes, the operating system on these nodes can even
be installed manually or in alternative a different kickstart file can be used for client, storage
and front-end nodes.

4.4 Secure shell host and key exchange

So now the operating systems are installed and configured on all the client nodes in exactly the
same manner, the only thing that distinguishes a node from another is their IP addresses and
their host names.

As stated in section 1, a key element when setting up a computer cluster is the fact that all the

23

nodes “trust each other” so that when protocols such as SSH or RSH are used to login from one
node to another, or they are used by other services such as MPI or GPFS, passwords are not
required. In this report the SSH application layer protocol was used.

Before we continue let us take a step back and talk about how the SSH protocol works, in
particular let us address the steps taken by SSH to enable a secure tunnel between two hosts.
When a user on a SSH client initially contacts a SSH server, the server will authenticate itself by
sending its public key, moreover his digital certificate, which is usually located in the /etc/ssh
directory, to the client. The user on the client will be prompted with a warning message to
accept it only if he is sure that the server is who he says to be and he will store it permanently
under his home in the ./ssh directory in the file “known__hosts”.

The next step occurs in the background: the client and the server initiate a Diffie-Helman DH
procedure in order to safely produce the same symmetric shared key between each other that
will be used for encryption. Data integrity will also be guaranteed by applying hash tags to the
data itself and then encrypting everything.

Next, the client will be challenged by the server in order to authenticate itself. Basically the
user on the client must input his password and the server checks that this password corresponds
to the one stored locally for that user. More specifically, the client hashes the password using
a hashing algorithm (e.g. MD5 or SHA) and sends it to the server who confronts it with the
hash of the same password stored locally. If the two hashes match, then the user on the client
is authenticated on the server.

A SSH tunnel is now up between the client and the server and the two can communicate by
using an encrypted flux of data.

An alternative way to enable the user on the client to authenticate on the server may be
signature-based. In this case the user on the client generates a public-private key pair, usu-
ally placed in the /home/user/.ssh directory. Now he will append his public key in a file named
“authorized__key" in the /home/user/.ssh directory on the server he wishes to connect to. When
the client starts an SSH session, the server will challenge the client by encrypting some random
data with the client’s public key, he will send the encrypted random data to the client, who will
decrypt it with his private key, now the client will create a hash of this random data like in the
password-based case and send it to the server, the server will hash the random data and check
that the two hashes match, if this is so than user authentication is completed successfully.

In the case of a computer cluster which is inserted in a private LAN, nodes are both SSH servers
and clients simultaneously because processes on each node must be able to access other nodes
and exchange data with them. In addition to this we must use a signature-based user authen-
tication in order to remove the need of manually inserting passwords. Firstly all servers must
be authenticated by all clients so that no warning prompt is issued upon login, this can be
done automatically by writing a script or even manually. Secondly it is possible to produce one
private and public key-pair and use it for every node by copying it in all the /home/user/.ssh
folder. Now each node will be able to access the other without being prompted neither for server
authentication nor for passwords (client authentication).

One weak point in the SSH login sequence is the initial step, where the client accepts that the
signature sent by the server is authentic. In our case we are using a private network which is
isolated from the Internet so this is not a big issue but on a public network one would need the
aid of a third party certification authority in order to safely complete this step. In fig. 16, we can
see the event sequence of a SSH connection both in the password case and in the signature-based
passwordless case.

In summary, server authentication on the client is obtained by initially accepting the server’s
public key. The authentication of the user on the server is obtained by inserting a password
when prompted or by copying the user generated client’s public key on the server. Assymetric
key-pairs are usually used for authentication, while symmetric keys are usually used for encryp-
tion.

24

assymetric SSH CLIENT SSH SERVER

: assymetric
key-pair key-pair
client private shared - client public .)
symmetric key 7 P B server private ge—
client public
shared server publi
X h public G
server public B symmetric key ¥ F
*user tries to login to server by issuing command: "ssh user@server" -
>
Server server responds by sending its public key or signature for server authentication on the client
authentication <
on client
*client is prompted and he accepts signature, which is placed automnatically in the fhomejuser/.sshiknown_hosts file
>
Deffie-Helman is used in order to create the same shared symmetric key on
En;rypt\cn both hosts, this key will be used for encryption, hashing algorithms and tags wil
and be used for data integrity -
Integrity <« >
. server challenges client for a password
«+
client
authentication *user is prompted for password: behind the scenes, client hashes passwerd inserted by user and
on sends it to the server, whe also hashes password stored locally and checks that the two hashes match,
server if so user is authenticated -
password -
based P An ssh tunnel is up between client and server -
< >
*user on client has previously generated private-key pair (e.g. rsa), kept private key in his fhome/userj.ssh
folder, copied the public key in the fhemejuser/.sshfauthorized_keys file on the server o
»
client server challenges client by encrypting random data with client's public key and sending
authentication <« itto the client
on
server
signature client decrypts random data and hashes it and sends it to the server who also applies hashing
based algorithm to random data and confronts it with the client hash , i the two hashes
match . user on client is authenticated on the server -
>
P, An ssh tunnel is up between client and server -
< >

Figure 16: FEvent sequence of a SSH connection, the actions indicated with a preceding “*" mean that
human interaction is necessary otherwise actions are performed in the background by the applications.

At this stage the cluster configuration is nearly complete: we have a great number of homoge-
neous nodes interconnected by a LAN and a dedicated storage network. Shared resources (i.e.,
the /home directory) are provided through the GPFS application and the nodes now “trust
each other” through SSH key exchange. Before proceeding, let us explore some additional useful
services that the management node can provide to the cluster nodes.

25

4.5 Local mirror

In section 4.3, we have described the automatic installation and post configuration of the op-
erating systems on the cluster’s nodes. At this stage, most of the necessary software will be
installed on each node, but there will always be some software or application that will have to
be installed at a later stage.

In order to accomplish this task it is possible to install software on the cluster’s nodes directly
from a Linux repository on the Internet. In this case the management node must serve as a
gateway and a NAT server for the nodes (see section 4.8).

Alternatively it is more practical to create a local repository on the management node that mir-
rors periodically an official Linux repository on the Internet. This is useful because if too many
nodes that simultaneously download from the Internet might saturate the Internet connection
bandwidth, furthermore if the connection is slow or not available it will not be possible to install
new software on the nodes. If a local repository is available, the nodes will get their updates
or new software directly from the management node. To set up a local mirror we must create
script on the management node that downloads the Linux packages from a official Linux mirror.
The data transfer can be performed with rsync. In addition we must enable an FTP or HTTP
server on the management node so that nodes can download packages from here. On the cluster
nodes we must insert the local repository IP address in the appropriate repository file.

In summary these are the following steps:

e create script on management node that downloads packages from official Linux repository,
rsync or ftp may be used;

e the script will be inserted in a cron file in order to be run periodically so that it is up to
date;

e create an ftp or http server on the management node so that it can export packages to
the cluster nodes;

e the nodes’ list of package repository must be changed so that it point only to the local
repository on the management node.

4.6 Domain name server

On a network, computers communicate and locate each other by using IP addresses, nevertheless
for a user it is simpler to assign to each node a hostname that corresponds to their IP address.
When we refer to a node through its hostname, either to connect to it or for other purposes
there must be a file or a service that converts the hostname to the IP address.

Name resolution between the hostname (“namespace”) and the corresponding IP address (“ad-
dress space”) on a Linux system is obtained mainly in two ways: either by modifying the
/etc/hosts file or by using a Domain Name Service DNS server. In the first case each node must
have the same /etc/hosts file in which every cluster hostname is resolved with respect to their
IP address. This is simple to do, but if nodes are added or removed or if hostnames are changed
on the cluster then one must modify every single file on each host. Configuring a DNS on the
management node is more scalable. In this case, one must modify only the DNS’ file.

Usually a domain name is represented by a string of characters separated by dots. Differently
from IP addresses where the network portion is on the left side and the host portion is on the
right, in domain names the more generic information is on the right, this represents the domain
under which your host or server may be found, while the actual hostname is on the left. For
example, in the fully qualified domain name: “myhost.mydomain.com”, “.com” represents the
top level generic domain while “mydomain” is the sub-domain under which the hosts on the
specific network are located and “myhost” is the actual hostname.

26

No single DNS server maintains a database with all the hostnames in the world, instead a hi-
erarchical model is used: the name space is divided in zones under which one or more domain
and even sub-domains are managed by one authority, one company or institute with a related
authoritative DNS server. By authoritative DNS it is meant that the server has the actual
translations for a certain hostname and can reply to a DNS request. Alternatively, the DNS
server delegates requests to an other DNS server that might know the answer.

Therefore name space is divided logically in top level domains under which many hosts or sub-
domains may be present, which may belong to different zones managed by different DNS servers.
The DNS resolution process is a client-server service: the client sends a DNS request to a specific
server (UDP port 53 is usually used), if the DNS server is authoritative for that domain name it
will send a reply else it will delegate the request to another DNS server. This process is usually
recursive, the search is delegated to a top level domain server and is handed down to lower level
domains servers until the answer is found. Sometimes DNS servers cache the answer so that this
process must not be repeated every time.

In our case the DNS server maintains information only on the cluster’s node names, and uses a
private domain that is not available on the public network, if a node requests other additional
hostnames then the request is delegated to a secondary DNS server. This is consistent with the
fact, that nodes are in a private network and are inserted in a private domain which cannot be
seen on the Internet but is used only locally. See appendix for more detail.

4.7 User authentication with ldap

Another useful task, is that of creating a unique database for authentication. Instead of creating
the same user on many nodes it is far more convenient to create one centralized database in
which to insert user and password information and telling the cluster nodes to point to this
server for user authentication. A solution for many years has been the Network Information
System NIS, lately the LDAP authentication method is becoming more and more common.

4.8 Access to the Internet using NAT

As can be seen in fig.2 the cluster client nodes are not on the public network, but in a private
one, which by definition is isolated from the public network and especially from the Internet.
Nevertheless, the client nodes may need to access the Internet in order to download software
which is not readily available on the local repository they may need to download data directly
from some external server. In this case, it is possible to use a node with 2 Ethernet cards,
one attached to the private network and the other connected to the public one in order to
function as a Network Address Translation NAT server for the nodes inside the private network.
In our case the management node can perform this task. Furthermore, NAT or in our case
Port Address Translation (PAT) means that the client nodes use the management node’s public
address associated to a specific source port in order to go onto the Internet. The management
node will automatically cache associations between the node’s private IP to the management
node’s public IP and specific dynamically determined source port. This way many nodes can
use the same public IP, obviously the more nodes use the same public IP address to go onto
the Internet the more the total available bandwidth is reduced. On a Linux system we can
implement a PAT server by using iptables, see appendix I for details.

27

5 Monitoring and management tools

5.1 Intelligent Platform Management Interface

The Intelligent Platform Management Interface IPMI architecture comprises a suite of protocols
and hardware specifications that permit the management of remote computer systems without
the need for any operating system to be present or running (“out-of-band management”) and in-
dependently from the system’s CPU and BIOS. It has been developed by many vendors amongst
which: IBM, CISCO, Intel, Dell, Hewlett-Packard, NEC corporation are the main contributors.
Usually the heart of the system is the Baseboard Management Controller BMC which is inte-
grated into the motherboard and controls low level functions independently of the operating
system [5]. The main tasks that are possible with IPMI are:

e Monitoring: measuring fan speed, voltages, power supply status and CPU temperatures
and other sensor values;

e Recovery: turning on and off the remote computer system, changing BIOS settings and
performing many other actions;

e Logging: keeping records of critical sensor values and critical events;

e Inventory: knowing what hardware sensors and components are connected to the computer
system.

It is possible also to define an alerting mechanism by using Simple Network Management Protocol
SNMP platform event traps.

In other words the IPMI sits under the operating system and enables the system manager
to perform actions that would not be possible with in-band management like SSH and other
remote connections. In order for IPMI to function, the remote computer must be connected
to the power supply even if not powered on and there must be some communication media
between the machine that must be controlled and the system manager computer, the latest
implementation of IPMI is version 2.

In fig.3 the IPMI architecture can be seen. The BMC micro-controller is at the center of the

ICMBE

Chassis
PCl mgmt. bus IPMB mgmit.
Satellite
MNVS Storage (
. : Pl g Controller)
N L |
. Tierface FRU :
Controler Baseboard _
Management Sensors & Controls
Fan sensor
Controller Temp. sensor
(BMC) Power control Chassis board
Reset confrol
|___privale mgmi. busses ——{ERum
/J_ FRU Ll FRU)
Redundant Power
{Temp. s. | board
System -
interface Memory Processor
board board
System bus
Motherboard

Figure 17: IPMI and BMC infrastructure.

infrastructure, locally it can be accessed through the system interface. The BMC communicates
with satellite controllers through the Intelligent Platform Management Bus IPMB, which is an
12C based serial bus through which communications between controllers inside the same chassis

28

are possible, a later innovation of this is the SMBus. While Intelligent Chassis Management Bus
ICMB permits the communication between controllers in different chassis.

In order for IPMI to be really useful it is necessary that IPMI commands can be sent locally
through the operating system (“in-band”) but especially remotely by using:

a dedicated NIC just for IPMI purposes (out-of-band);

the computer system NIC can be shared for communications (side-band);
e serial connections (out-of-band)
e serial over LAN (SOL) (out-of band)

The in-band feature means that the operating system is up: we can control send IPMI messaged
to the BMC through the operating system or we can control the computer remotely by using
tools such as SSH. While out-of-band means that the computer may be controlled even if its
operating system is down. Side-bands means that we use the motherboard’s NIC to control the
BMC and not a dedicate card. Anyhow, when using a LAN interface, commands are sent to the
BMC through remote control management protocol RCMP, which uses UDP port 623, this is also
called IPMI-over-LAN as the IPMI control set was initially thought for serial communications.
SOL is an important feature of IPMI 2, in this case, the information which is forwarded to the
motherboard’s serial port is then redirected to a LAN connector and a switched network may
be used.

Information is stored into the System Event Log SEL and in the Sensor Data Record SDR. In the
former, logs are sent regarding critical events or failures, while in the latter there is information
regarding the type and number of sensors. Information may be stored also in Field Replaceable
Units FRU.

Interaction with the BMC communication interfaces may be obtained by using channels from 0
to 15, each of which must be configured appropriately. In particular a user with administrator
privileges and a password must be defined when using a channel for remote access. Usually
the zero channel is used by the IPMB while the following 10 channels may be used for LAN
communications. So in order to access the BMC remotely one must choose a channel (e.g.
channel 2), define a user with administrator privileges, a password and other optional features
such as MD5 encryption. For that channel the IP address, netmask and gateway must also be
configured.

Sessions may also be configured in order to obtain authentication or process several IPMI streams
on a single channel.

The software implementation of IPMI 2, has been accomplished by many open source products
such as OpenIPMI, freeipmi and ipmitool, the details are dealt with in appendix J, anyhow, one
must install the software and then he can interact with the BMC of his own computer through
command line and he may configure it. Off course, the BMC may be configured also through
BIOS. If many computers have been configured appropriately then it is possible to manage a
computer remotely via the software tools described above, installed on the system manager’s
computer.

5.2 Ganglia

Ganglia is an open source monitoring tool used mainly to gain CPU, memory and network load
informations and statistics. It has low overhead and uses technologies such as External Data
Representation XDR with Uniform Datagram Protocol UDP messages for data transfer, eXten-
sible Markup Language XML for data poling and representation and Round Robin Database
RRD tool for data storage and management. Ganglia comprises of two daemons: gmetad and
gmond, which are mainly used to aggregate and send node information respectively. The first
daemon is usually installed on the server node while the second on the client nodes.

29

ganglia

client

W'tE = internet or LAN
\tl)vreowser = connection

php web interface

main — and web server
gmetad |E—
server =—
data saved|=—

inrrd

XML TCP XML TCP

gmetad h ; d
server poling poling gmeta
, server,
idna:?dsaved data saved
inrrd

-~

.
*«. failover
.

gmond gmond
nodes, XDR UDP XDR UDP nodes

data saved multicasts multicasts = data saved
in in-memory in in-memory
hash table hash table

Ganglia cluster 1 Ganglia cluster 2

Figure 18: A complex ganglia architecture with two ganglia sub-clusters. The green arrows indicate
communication between gmond nodes through XDR UDP messages while the red lines inidcate gmetad
poling through XML TCP messages.

On each client node, the gmond daemon has performs the following tasks: it monitors changes
on the host, it announces them in unicast or multicast mode using XDR, it listens to changes in
the cluster nodes through unicast or multicast mode, it responds to XML requests of the cluster
state that are sent from a gmetad server. Therefore data transmission can occur in 2 ways:
XDR using UDP (default port 8649) between gmond daemons or XML using TCP (default port
8951) between gmond and gmetad daemons.

On the server node, the gmetad node has the task of poling gmond clients or even other gmetad
servers through XML requests in order to gain cluster or clusters information. Data is then
usually stored locally in a RRD and can then be accessed by a php engine, served through a
web server (e.g. apache2), then the web-interface can be observed locally or remotely through
a web browser.

Ganglia uses a multicast-based listen /announce protocol in order to automatically discover nodes
added or removed to the cluster without any predetermined knowledge on the cluster member-
ship or topology. When a node does not send any information for over a fixed amount of time
it is considered automatically down and is then removed from the ganglia cluster. Conversely,
when a node is turned on and it has the gmond daemon correctly configured, it is added auto-
matically to the ganglia cluster and all its information appears on the web interface.

In the IBM cluster we used ganglia in the following way: the gmetad daemon was installed on
the management node, together with the RRD tool. The php web interface and a web server
were also installed. In addition to this the management node is also a gmond client with the
possibility of listening to other gmond XDR announcements. The client nodes send their in-

30

both gmond and
gmetad daemons

XML TCP poling of management node.
its own gmond daemon php web-interface,
which has information

web server,
on all the rest of the web browser used
cluster

to monitor nodes

XDR UDP
unicast towards
gmond daemon
in management /
node

gmond

daemon
installed on each
node

Figure 19: Ganglia architecture of cluster described in this report. All nodes send unicast XDRs to the
management gmond daemon, the gmetad daemon in the management node poles itself in order to gain
information on cluster nodes and stores data in RRD. The php engine gets data from the RRD and
displays it through a web-server. By opening a browser on the management node it is possible to view
node statistics.

formation not in multicast mode but in unicast only to the management node gmond daemon.
The gmetad daemon on the management nodes poles the it own gmond daemon for cluster
information which is then stored in a RRD and is then accessed by the php web interface. For
more details on how to configure ganglia go to appendix K.

5.3 pconsole and shmux

In order to configure many nodes simultaneously (e.g., install packages, alter configuration files),
tools such as pconsole and shmux are useful. In the case of pconsole, it is possible to open many
xterminals on the management node. Each terminal corresponds to a different node. By typing
commands on a console terminal, these commands are echoed to all the other terminals and
therefore to all the nodes. In order to use pconsole you must first perform ssh key exchange
and authentication between the management node and all the other nodes (section 4.4). The
configuration details of pconsole may be seen in appendix L.

Another useful tool is the shmux “shell multiplier”, a command line tool through which it
is possible to perform the same command on many nodes at the same time. Also in this case
key exchange and authentication between management node and the other nodes must be per-
formed before hand. A simple example would be that of shutting down all nodes at the same
time, in this case one may create a file with a list of node IPs or hostnames (if the file /etc/hosts
or the DNS server contains all node resolution) and it can be fed into the shmux command
followed by the instruction that must be performed on the nodes listed in the file. In the next
example we first create a file “used__hosts” with all the hostnames of the nodes that we want to
control than we apply it to shmux in order to shut down all the nodes:

e shmux -c¢ “halt” - < used__hosts;

it is possible to insert any command between brackets in order to interact with many nodes
simultaneously.

31

6 Tests using MPI

Once we have defined a hierarchical structure, installed the operating system on our client and
server nodes, connected the nodes together with dedicated networks, and we are sure that the
nodes can communicate between each other without passwords, it is possible to implement a
middleware that binds the nodes together in order to run parallel programs across a them.
Parallel code can also be implemented without any middleware. For example, in the case of
SIMD one can launch identical code on several nodes through ssh sessions which process different
data sets, nevertheless, the difficulty in parallelization is that the nodes must coordinate and
synchronize to handle common data structures, share memory and execute subprocesses on
different CPUs. All this can be done by middleware software, while implementation details
are hidden from the user, who must only launch the program on a single node as if it were a
sequential program. The interface takes care of making the cluster seem as one big computer to
the user. Some middleware examples are Parallel Virtual Machine (PVM) or Message Passing
Interface (MPI), the latter has been used in this report.

The MPI is a effort to define such interface (syntax, libraries) in order to enable communi-
cation in a shared-memory or distributed memory multiprocessor environment. It is portable
across many platform and programming languages and is independent on the communication
technology (e.g., ethernet, infiniband) between nodes. MPI commonly supports ¢, c++ and
fortran programming languages but python and java support is also available.

There are many implementations of MPI (e.g., OpenMPI, LAM/MPI, MPICH2). For testing
purposes, MPICH2 was chosen here. The installation and configuration of MPICH2 is described
in the appendix M.

Usually programs are launched on the master node (e.g., the cluster’s front-end on which
login is accomplished), while the actual execution of the program subprocesses usually occurs
on the slave nodes (e.g., some cluster’s computing nodes). Nevertheless the MPICH2 daemon
(mpd) must run both on master and slave nodes.

It is possible to do some testing using the simple programs which are available in the doc-
umentation package. Moreover some good test programs can be obtained from the website:
https://computing.llnl.gov/tutorials/mpi/exercise.html. If one wants to test embarrassingly
parallel program (i.e., 100% parallel) one can try the mpi_prime ¢ or fortran program. For
example, the front-end is used as the master node and 4 computing nodes (a total of 32 PUs in
our case) are used as slave nodes. This program searches for prime numbers in a rage of 1 to
25-107 (tab. 2). In this case there is no need for subprocesses to communicate, they can just
share the range over which to look for prime numbers and then report the result to the master
node. As the number of CPUs doubles the runtimes decreases more or less linearly.

This is not always true, it depends on the portion of sequential code embedded in the program
and often it may happen that after a certain number of CPUs performance does not improve
at all as stated by Admahal’s law, in some cases it might even get worst, this is called parallel
slow down.

In some cases, especially in the case of very simple toy programs, the time spent sending mes-
sages to distinct nodes may be higher than the actual computing time, in this case no gain is
obtained in parallelizing a program.

32

runtime [s]

n° of processors | mpi_prime | VecSum | quad_ mpi
2 185 0.000425 0.3
4 92 0.000360 0.1
8 46 0.000111 0.05
16 23 0.00053 0.04
32 11 0.000022 0.09

Table 2: Runtime for 3 different programs: mpi_prime, VecSum and quad__mpsi.

As the number of

processing units that are used increase the runtime varies. The first program computes prime numbers in
a range of numbers, the second computes the sum of elements in a vector, the third computes an integral

using the quadrature rule.

33

Appendix

In the appendix, we will show basic configuration steps to get your service up and running,
the symbol [...] in configuration files indicates that the default configuration or parts of the
configuration which are trivial have been omitted. Furthermore, IP addresses will be indicated
generically as “xxx.xxxX.XXX.Xxx".

A

Turn

Turn

B

B.1

Turn on the Cluster
it on

Go behind the racks and turn up the 5 leavers corresponding to each rack (see fig.6a):
- one big red plug (380 V for rack ventilation)

- one small blue plug (220 V for rack monitoring)

- three blue plugs (220 V for internal computer system power supply)

Go to front of cluster, inside each rack on the left black leaver must be switched in the up
direction, consequently press green button, after two minutes computers should turn on
(see fig. 1).

Turn on storage servers then front-ends (inside rack two) afterwards turn on computational
nodes starting from 1 to 60 (inside rack one and three). Single nodes can be turned on
manually simply by pressing white button on each node or remotely by using ipmitool
utilities.

Use gpfs utilities to mount GPFS file system and therefor /home directory on each node
(e.g., mmstartup -a on front-end node).

it off

On front-end, use GPFS utilities to unmount GPF'S file system and therefor /home direc-
tory (e.g., mmshutdown -a).

Shut down operating system on each computational node, you can create a script in order
to automatize this task.

Turn off each node manually by pressing white button or remotely by using ipmitool
utilities.

On the front of the cluster, inside each rack on the left, black leaver must be switched in
the down direction (see fig. 1).

Go behind the racks and turn down the 5 leavers corresponding to each rack (see fig.6a).

Configuring GPFS

installation

Operating System: Scientific Linux 6.2 x86_ 64

Main Software: gpfs.base-3.1.0-1.x86_ 64.rpm, gpfs.gpl-3.1.0-1-noarch.rpm
gpfs.docs-3-1.0-1.noarch.rpm , gpfs.msg.en_ US-3.1.0-1.noarch.rpm

Update Software: gpfs.base-3.4.0-18.x86_ 64.update.rpm, gpfs.docs-3.4.0-18.noarch.rpm,

34

gpfs.gpl-3.4.0-18.noarch.rpm, gpfs.msg.en_ US-3.4.0-18.noarch.rpm

Additional Software: kernel-devel, kernel-headers, gcc-c++,
compat-libstdc++-33.1386, compat-libstdc++-33.x86_ 64,
imake.i386, imake.x86_ 64, ksh, kcp, scp, ssh

e install on every node the main software packages placed under common directory (it is not
free, it must be acquired from IBM):
rpm -ivh /path/gpfs_software_ folder/gpfs.base-3.1.x.x.x86_ 64.rpm
rpm -ivh /path/gpfs software_folder/gpfs.docs-3.1.x.x.noarch.rpm
rpm -ivh /path/gpfs_software_ folder/gpfs.gpl-3.1.x.x.noarch.rpm
rpm -ivh /path/gpfs_software_folder/gpfs.msg-3.1.x.x.noarch.rpm

e update software placed under common directory (updates can be obtained from http://www-
933.ibm.com/support/fixcentral/ for free):
rpm -Uvh /path/gpfs_software_ folder/gpfs.base-3.4.x.x.x86_ 64.rpm
rpm -Uvh /path/gpfs_software_folder/gpfs.docs-3.4.x.x.noarch.rpm
rpm -Uvh /path/gpfs_software_ folder/gpfs.gpl-3.4.x.x.noarch.rpm
rpm -Uvh /path/gpfs_software_folder/gpfs.msg-3.4.x.x.noarch.rpm

e it is likely that these steps will not work
unless you perform the following tasks in /usr/lpp/mmfs/src/config:
- export SHARKCLONEROOT=/usr/lpp/mmfs/src
- ¢p env.mrc.proto env.mrc.sample
- edit site.mrc by inserting or substituting following tags:
#define GPFS__LINUX
#define GPFS_ARCH_ X86
LINUX__DISTRIBUTION = REDHAT__AS_LINUX
#define LINUX_DISTRIBUTION__LEVEL 90
#define LINUX_KERNEL__ VERSION 2063299 (e.g. for kernel version 2.6.32-358)
KERNEL HEADER DIR = /lib/modules/‘uname -r‘/build/include
KERNEL_BUILD_DIR = /lib/modules/‘uname -r‘/build
- edit the file /etc/redhat-release:
“Red Hat Enterprise Linux Server release 6.2 (Tikanga)”

e [t is important to note a problem that might occur on scientific linux distributions:
the soft link /lib/modules/‘uname -r‘/build is used to build kernel modules and it points
to /usr/src/kernel/2.6.x. In some versions of linux a build will not work unless a di-
rectory /lib/modules/‘uname -r‘/build is actually created and the whole content of the
/usr/src/kernel /2.6.x is copied in this directory.

e build the portability layer (kernel modules):
in /usr/lpp/mmfs/src you must perform:
make Autoconfig
make World
make Installlmages make rpm

e once the build is complete you will find in the /usr/lpp/mmfs/bin directory, modules such
as:
mmfslinux, mmfs26, tracedev, dumpconv, Ixtrace.

35

e make rpm will package the binary modules so that you do not have to repeat this step on
other nodes but you can install them with the rpm utility.

B.2 configuration: client-server architecture

The storage server is attached to the disk subsystem through fiber channel and it can see three
logical disks (dm0, dml, dm2) as if they were local. The objective is to unite the three disks
under a unique GPFS file system, mount it in the /home directory and export the /home
directory to all cluster nodes.

e make sure that every node trusts each other as explained in appendix F, make sure that all
hostnames are resolved to their IP address by using local /etc/hosts file or a DNS server

e create a directory (e.g. /root/gpfs/configure), under which to place two important files:node.desc
and disk.desc. The first indicates the nodes that will partecipate to the GPFS cluster, the
second describes the disks that will participate to the GPFS file system.

e e.g nodes.desc:
gpfs2.test-gpfs
gpfs3.test-gpfs
gpfsd.test-gpfs

)]

o e.g disk.desc:
/dev/dm-0:storage-server::dataAndMetadata:1:disk01 array01
/dev/dm-1:storage-server::dataAndMetadata:1:disk02__array02
/dev/dm-2:storage-server::dataAndMetadata:1:disk03_array03

e create gpfs cluster:
mmcrcluster -C gpfs-cluster -N nodes.desc -p gpfsl.test-gpfs:quorum -r /usr/bin/ssh -R
/usr/bin/scp

e you can add nodes at a later stage:
mmaddnode gpfs10.test-gpfs

e look at the new GPFS cluster:
mmlscluster

e turn the gpfs daemon on each node:
mmstartup -a

e create network shared disk:
mmernsd -F disk.desc

e create the file system:
mmecrfs gpfs-fs -F disks.desc -A yes -T /home -m 1 -M 2 -r 1 -R 2 -Q yes -B 256K -n 10

B.3 delete gpfs cluster

e mmumount /dev/gpfs-fs -a
e mmdelfs /dev/gspfs-fs

e mmdelnsd diskO1_ array01

36

e mmdelnsd disk02_ array(02
e mmdelnsd disk03_ array03
e mmshutdown -a

e mmdelnode -a

B.4 remove GPFS software
e rpm -e /path/gpfs_software_folder/gpfs.base-x.x.x.x86__ 64
e rpm -e /path/gpfs software_folder/gpfs.gpl-x.x.x.noarch
e rpm -e /path/gpfs_software_folder/gpfs.docs-x.x.x.noarch
e rpm -e /path/gpfs software_folder/gpfs.msg-x.x.x.x86_ 64
e rm -rf /var/mmfs
e rm -rf /var/adm/ras
e rm -rf /usr/lpp

e rm -rf /tmp/*

B.5 configure GPFS quotas

Under the gpfs defined partions there will be quota files regarding user, group and file quotas,
in order to edit and customise quotas use the following utilities:

e mmlsquota -a

e mmrepquota -a

e mmedquota -u username

e change soft and hard limits
e mmcheckquota

e mmaquotaon

e mmaquotaoff

C Extract ISO image and copy on system’s hard drive

In order to extract the content of an iso image on a dvd or downloaded from the Internet on a
specific folder in the systems hard drive. This is useful for network booting from your server.

e mkdir /export/OS
e mount -o loop -t 1809660 <image>.iso /mnt
e cp -r /mnt/<image>.iso /export/ISO

Often the operating system will reside on two dvds, the second of which contains extra packages.
In order to be coherent usually the extra packages should be copied in the packages directory
that is found in the first dvd.

37

D Configure PXE booting and network installation

On the server node you must configure services such as DHCP, TFTP and NFS server while on
the client node you must enable booting from the NIC assuming that the network card supports
PXE. The latter task may be performed through BIOS or remotely by using IPMI software tools
(appendix J).

D.1 configure DHCP server
Operating System: Scientific Linux 6.2 x86_ 64
Software: dhcp.x86_ 64

The dhep server is used in order to assign to the PXE enabled NIC an IP address upon boot

e install dhcp server daemon: “yum install dhcp.x86_ 64”

e edit configuration file in /etc/dhcp/dhcpd.conf:
ddns-update style none;
ignore client-updates;
deny unknown-clients;
not authoritative;
default-lease-time 600;
max-lease-time 7200;

option domain-name "mydomain”;
option domain-name-servers xxx.Xxx.XXX.XXX;
option routers xxx.XXX.XXX.XXX;

subnet XXxX.XXX.XXX.XXX netmask Xxx.XXx.XXX.Xxx {

next-server Xxx.XxX.XXX.XXX;
filename pxelinux.0;

host hostname{hardware ethernet xx:xx:xx:xx:xx:xx;fixed address Xxx.XXX.XXX.XXX; }

}

e besides the basic options, it is important to note the “next-server” and the “filename”
option where we specify from which tftp server we will get the bootloader and in which
location under the root tftp directory.

D.2 configure TFTP server for network booting

Operating System: Scientific Linux 6.2 x86_ 64
Software: syslinux-tftpboot.x86_ 64 (bootloader and modules in /tftpboot for network booting),
xinetd.x86__ 64 or tftp-server.x86_ 64 (server), tftp.x86_64 (client for testing)

e First of all download syslinux-tftpboot.x86_ 64, you will find a /tftpboot directory with
many files inside, the only one you need is pxelinux.0 which must be left here, create 2

38

subdirectories: pxelinux.cfg and OS, in the first directory we must put the bootloader file
while in the second we will put the kernel image and the initial ramdisk.

the bootloader file can be named “default" and it will be used by all the nodes or it can be
named with the IP address in hexadecimal that the DHCP server will assign to the node,
in this case the file is valid only for that node and will be used only for that node or it
can be named with the IP’s network portion expressed in hexadecimal, in this case the file
will be valid for all the nodes in that network.

An example of the bootloader file in /tftpboot/pxelinux.cfg/default:

default MYOS

manual installation

label MYOS

kernel OS/vmlinuz

append initrd = OS/initrd.img method nfs:xxx.xxx.xxx.xxx: /export/OS/ devfs=nomount

automatic installation

label MYOS1

kernel OS/vmlinuz

append initrd = OS/initrd.img ksdevice=eth(0 ip=dhcp
ks=nfs:xxx.xxx.xxx.xxx:/export /OS /ks/default.ks

In the default file we can choose how to boot depending on the boot tag, in the first
case “manual installation”, the kernel and the ramdisk is loaded from the /tftpboot/OS
directory and the rest of the OS is loaded from the NFS server /export/OS directory.

In the automatic configuration all is the same, except we tell the system which interface
to use and also we tell the system to automatically get a IP address through DHCP. In
addition the kickstart configuration file, named default.ks, is indicated.

intall the tftp server: yum xinetd.x86_ 64

go to file /etc/xinetd.d/tftp:

service tftp {

bind = xxx.Xxxx.Xxx.xXXx #your tftp server’s IP
server__args = -s /tftpboot #tftp root directory
disable = no #enable the xinetd’s tftp service

}

start the xinetd daemon: service xinetd start

install the tftp client: yum install tftp.x86_ 64

test the tftp server locally :
tftp XXX XXX XXX.XXX
get somefile

39

D.3 configure NFS server

Operating System: Scientific Linux 6.2 x86_ 64
Software: nfs-utils.x86 64

The Network File System daemon is used in this case in order to export the complete oper-
ating system to the system that is performing network installation. It is also used in post
configuration in order to copy configuration files and software to the cluster node.

e create directory mkdir /export and extract operating system ISO image here
e install nfs: yum install nfs-utils.x86_ 64

e go to /etc/exports:
/export xxx.xxx.xxx.0/24(rw, sync, no_root__squash)

e start server: service nfs start

E Configuration of kickstart

You must specify that you will use a kickstart configuration file for installation of the OS in the
bootloader file (appendix D.2). You must also indicate location of the file.

In our case the kickstart file is located in the NFS exported directory, in particular in /ex-
port/OS/ks/default.ks, the following lines illustrate an excerpt of the default.ks file that was
used:

basic configuration parameters install

nfs —server=xxx.xxx.xxx.xxx —dir=/export/OS

lang en_ US.UTF-8

keyboard it

network —onboot yes —device ethO —bootproto dhcp —noipv6
network —onboot no —device ethl —noipv4 —noipv6

rootpw —iscrypted place_ crypted_ password__here

reboot

firewall —enabled

authconfig —enableshadow —passalgo=sha512

selinux —enabled

timezone —utc Europe/Rome

bootloader —location=mbr —driveorder=sda,sdb —append="rhgb crashkernel=auto quiet"

partitions zerombr

clearpart —all

part / —fstype=ext4 —size=50000 —ondisk=sda —asprimary

part swap —size=20000 —ondisk=sda —asprimary

part /scratchl —fstype=ext4 —size=100 —grow —ondisk=sda —asprimary
part /scratch2 —fstype=ext4 —size=100 —grow —ondisk=sdb —asprimary

package installation repo -name="Scientific Linux" —baseurl=nfs:xxx.xxx.xxx.xxx:/export /OS
—cost=100

40

%packages

@base
@client-mgmt-tools
@core

@debugging
OpenlPMI
Im_sensors

rsh

ksh

post installation script

turn off services

/etc/init.d /NetworkManager stop

/sbin/chkconfig NetworkManager off

change run level

/bin/sed -i s/id:5:initdefault: /id:3:initdefault: /g /etc/inittab

add a repository

/bin/echo "

[epel]

name=extended packages enterprise linux
baseurl=http://dl.fedoraproject.org/pub/epel/6/x86_ 64/

enabled=1

gpgcheck=1 " >> /etc/yum.repos.d/sl-other.repo

permanently load InfiniBand over Lan module

/sbin/modprobe ib__ipoib

echo "modprobe ib__ipoib" >> /etc/sysconfig/modules/ib__ipoib.modules
/bin/chmod 755 /etc/sysconfig/modules/ib_ipoib.modules

retrive mac address and last octect of ip address obtained from dhcp server
and configure static IP address

ipaddr=*/sbin/ifconfig ethO | grep "inet addr" | awk -F: ’{ print $2 }’
| awk ’{ print $1 }’| awk -F. ’{ print $4 }*

hwaddr=*/sbin/ifconfig ethO | grep "HWaddr" | awk '{ print $5 }*

echo "

DEVICE="eth0"
BOOTPROTO="static"
BROADCAST="xxx.xxx.255.255"
GATEWAY ="xxx.XXX.XXX.XXX"
HWADDR="$hwaddr"
IPADDR="xxx.xxx.xxx.$ipaddr"
NETMASK="255.255.0.0"
NM__CONTROLLED="no"
ONBOOT="yes"
TYPE="Ethernet" " > /etc/sysconfig/network-scripts/ifcfg-eth0

make sure nfs directory is mounted

mount XXxX.XXX.XXX.XXX:/export /mnt

copy files from directory

cp /mnt/configFiles/hosts /etc/ # install software from nfs directory

41

rpm -ivh /mnt/software/ GANGLIA /*.rpm

Y%end

F Configure SSH password-less access

Operating System: Scientific Linux 6.2 x86_ 64
Software: openssh-clients.x86_ 64, openssh-server.x86_ 64

e install software on all nodes
e run server daemon on every node: “service sshd start”

e from each node access manually or with a script every other node (including the local
node) in order for server authentication to occur: every node saves certificate of the other
nodes in the file /home/user/.ssh/known_ hosts

e on one node create rsa keys and follow wizard:
ssh-keygenerate rsa

e copy public key in file /home/user/.ssh/authorized_keys on each node, keep private key
in folder /home/user/.ssh

e you should now be able to access every node without a password and without being
prompted for server authentication.

G Configure local repository

In order to configure local repository on a server you must first configure an ftp server that
permits nodes to download software from the server, than write a script that downloads packages
from official repository on Internet to ftp directory on your server. Run script periodically by
using the cron daemon. Finally configure clients’ repository list file so that it points to your ftp
server.

G.1 configure ftp server

Operating System: Scientific Linux 6.2 x86_ 64
Software: vsftp.x86_ 64
(ftp server), ftp.x86_ 64 (client for testing)

e install software: “yum install vsftp.x86_ 64 ftp.x86_ 64"

e modify file /etc/vsftpd/vsftpd.conf:
listen = YES
local enable=YES
anonymous_ enable=YES
anon_ root=/var/ftp
no_anon_ password=NO
listen address=xxx.XxxX.XXX.XXX
listen_ port=21

42

e in the previous file we are telling the ftp server to listen to requests locally and also
remotely but only out of a specific interface (in our case the private one), the ftp server
must work in anonymous mode (no user defined) with no password and the ftp root will
be /var/ftp.

e service vstpd start

e test locally or remotely with command line : “ftp xxx.xxx.xxx.xxx” or with a browser. If
prompted for user or password in anonymous mode it will be in both cases “ftp”.

G.2 create mirror script

Operating System: Scientific Linux 6.2 x86_ 64
Useful Links: https://www.scientificlinux.org/download/mirroring/

Regarding Scientific Linux it is possible to browse to ftp://ftp.scientificlinux.org/linux/scientific/
in order to look at which versions and packages are available, you may use ftp or rsync to create
mirror.

e create script file and download mirror directly to the correct ftp directory so that it can
be subsequently used by the nodes as a package repository, e.g. download_ mirror:

rsync -avkSH —delete —exclude=i386 —exclude=archive
rsync:/ /rsync.scientificlinux.org/scientific/6.2/
/var /ftp/linux/scientific/6.2

e in the previous script, besides the directories that are being excluded all the rest is being
mirrored precisely .

e the initial download will take many hours if not days and usually download size is of the
order of hundreds of GBs.

e In order to keep mirror synchronized it is useful to create cron daemon that runs the script
above once a day

e on the client side the file must be modified in order to point to the local repository, e.g.
/etc/yum.d/yum.repos.d/sl-other.repo:

[loc — sl

name=scientific linux local base repository
baseurl=ftp://xxx.xxx.xxx.xxx/linux/scientific/6.2/x86_ 64/os/
enabled=1

gpgcheck=0

e you must disable any other repository entry that point to servers on the Internet.

H Configure local DNS server

Operating System: Scientific Linux 6.2 x86_ 64
Software: bind.x86 64
Software Dependencies: bind-chroot.x86_ 64, bind-libs.x86_ 64, bind-utils.x86_ 64

43

e Install software;

e in the main configuration file, you can set options and define direct and inverse zones, it
is divided into an options section, a zone section and an include section, /etc/named.conf:

options {

listen-on port 53 { 127.0.0.1; XXX.XXX.XXX.XXX; };

listen-on-v6 port 53 none; ;

directory "/var/named";

dump-file "/var/named/data/cache_dump.db";

statistics-file " /var/named/data/named_ stats.txt";

memstatistics-file " /var/named/data/named__mem_ stats.txt";

allow-query 127.0.0.1;xxx.xxx.xxx.0/24;; allow-transfer none; ; allow-recursion none;;
recursion no; #forwarders { xxx.XXX.XXX.XXX; };

dnssec-enable yes;
dnssec-validation yes;
dnssec-lookaside auto;

/* Path to ISC DLV key */
bindkeys-file "/etc/named.iscdlv.key";

managed-keys-directory "/var/named/dynamic";

b

e additional options, for example switching off IPv6 requests can be set in /etc/sysconfig/named:
[...] OPTIONS =" -4";

e the actual database where records are kept is in the file /var/named/fwd.mydomain:
$TTL 86400
IN SOA mgm?2.srt-grid. root.srt-grid. (
2013061002 ;Serial
3600 ;Refresh
1800 ;Retry
604800 ;Expire
86400 ;Minimum TTL
)

IN NS management.mydomain.

nodel IN A xxx.xxx.xxx.201
node2 IN A xxx.xxx.xxx.202

]

e the inverse resolution records file is kept in /var/named/rev.mydomain:

$TTL 86400

IN SOA mgm?2.srt-grid. root.srt-grid. (
2013061001 ;Serial

3600 ;Refresh

44

1800 ;Retry

604800 ;Expire

86400 ;Minimum TTL
)

IN NS management.mydomain.

management IN A XXX.XXX.XXX.XXX
206 IN PTR management.mydomain.

nodel IN A xxx.xxx.xx%.202
202 IN PTR nodel.mydomain
node2 IN A xxx.xxx.xxx.203
203 IN PTR node2.mydomain

e modify server’s /etc/resolv.conf:
search mydomain
nameserver 127.0.0.1

local dns
nameserver Xxx.XxXx.Xxx.xxx # secondary dns for public lan and internet

e modify client’s /etc/resolv.conf:
search mydomain
nameserver XxXx.Xxxx.xxx.xxx 7 local dns server’s IP address nameserver xxx.XxxX.XXX.XXX
secondary dns for public lan and internet

e start service: “service named start”

I Configure NAT

Operating System: Scientific Linux 6.2 x86_ 64

e supposing the ethl is the public interface while the ethQ is the private one, create bash
script file, e.g. myNat:

#!/bin/bash

IPT=/sbin/iptables
NAME=mylptablesNat
STATUS=mylptablesNatStatus

case "$1" in

start)

$IPT -t nat -A POSTROUTING -0 ethl -j MASQUERADE

$IPT -t filter -A FORWARD -i ethl -o ethO -m state —state RELATED,ESTABLISHED
-j ACCEPT

$IPT -t filter -A FORWARD -i ethO -o ethl -j ACCEPT

echo 1 > /proc/sys/net/ipv4/conf/all/forwarding

echo "service is on" > $STATUS

45

79

stop)

$IPT -t nat -D POSTROUTING -0 ethl -j MASQUERADE

$IPT -t filter -D FORWARD -i ethl -o ethO -m state —state RELATED,ESTABLISHED
-j ACCEPT

$IPT -t filter -D FORWARD -i ethO -0 ethl -j ACCEPT

echo 0 > /proc/sys/net/ipv4/conf/all/forwarding

echo "service is off' > $STATUS

)

echo "Usage: SNAME {start|stop|status}" >&2

exit 1

esac

exit O

e the previous file takes traffic from the private network in the eth(interface and it forwards
it to the public ethl interface, it masquerades the private IP with the public one, it permits
reply traffic from servers on the Internet to the private network and it always permits traffic
from the private network to the public one. When the service is stopped, rules are removed
from the nat and filter tables and forwarding is disabled.

e start iptables daemon: “service iptables start”

e start service: “/myNat start”

J IPMI configuration

System: IBM system x3550
Operating System: Scientific Linux 6.2 x86_ 64
Software : OpenIPMI.x86_ 64 , ipmitool.x86_ 64

e Install OpenIPMI which provides the drivers (kernel _modules) such as ipmi_si, ipmi__devintf,
ipmi_msghandler and install ipmitool which provides the command line interface which
permits to interact with the IPMI architecture.

e start up the ipmi daemon: service ipmi start, now there should be a /dev/ipmi0 file

e Now ipmitool can be used locally in order to check sensor values and so on. If we want to
use ipmitool remotely than we must choose a IPMI channel (e.g., 1-10) for lan connections
and configure LAN settings, user and so on.

e In order to configure LAN settings on channel 1, we must configure: static IP use, the IP
itself, netmask, channel access and other information, first of all it is useful to look at the
current settings:

- ipmitool lan print 1
- ipmitool lan set 1 ipsrc static

46

K

- ipmitool lan set 1 ipaddr xxx.XXX.XXX.XXX

- ipmitool lan set 1 netmask xxx.XXX.XXX.XXX

- ipmitool lan set 1 defgw ipaddr xxx.XXX.XXX.XXX

- ipmitool lan set 1 defgw macaddr xxx.Xxx.XXX.XXX
- ipmitool lan set 1 arp respond on XxXxX.XXX.XXX.XXX
- ipmitool lan set 1 auth ADMIN MD5

- ipmitool lan set 1 access on

create a user with administrator privileges, associate user to a user id, and other useful
paramenters, first of all you may want to look at channel 1 current user configuration:

ipmitool user list 1

ipmitool user set name userid username

ipmitool user set password userid yourpw

ipmitool channel setaccess 1 userid link=on ipmi=on callin=on privilege=4
ipmitool user enable userid

if configuration has been performed on each node, using appropriate user, password, sub-
net and so on, then it is possible to use the following basic useful commands for remote
administration such as checking chassis status, turning on or off computers, choosing boot
device for a given system, observing SEL or SDR logs and so on:

ipmitool -H xxx.xxx.xxx.xxx -U username -P yourpw chassis power {on|off|status}
ipmitool -H xxx.xxx.xxx.xxx -U username -P yourpw chassis bootdev {pxe|disk|bios|cdrom}
ipmitool -H xxx.xxx.xxx.xxx -U username -P yourpw sel {infol|list|elist|clear}

- ipmitool -H xxx.xxx.xxx.xxx -U username -P yourpw chassis sensor

- ipmitool -H xxx.xxx.xxx.xxx -U username -P yourpw channel info

ipmitool -H xxx.xxx.xxx.xxx -U username -P yourpw fru info

Ganglia configuration

Operating System: Scientific Linux 6.2 x86_ 64
Software : ganglia 3.1 x86_ 64

On server node:

include in repository http://dl. fedoraproject.org/pub/epel /6/186_64/;
yum install ganglia-gmetad ganglia-gmond ganglia-web rrdtool httpd;
configuration files are under /etc/ganglia: gmond.conf and gmetad.conf.

gmetad.conf:
data_ source "clusterName" 15 localhost #modify this line

gmond.conf:
globals{

]

send metadata_interval = 60

}

cluster{

47

L

name = "clusterName"

}

udp_ send__channel{

#bind__hostname = yes #mcast_ join = 239.2.11.71
#ttl=1 host = xxx.xxX.XXX.XxX F#ganglia server ip
port = 8649

}

udp_ receive__channel{
#mcast_join = 239.2.11.71
port = 8649

#bind 239.2.11.71

}

o)

/etc/httpd/conf/httpd.conf:

Listen 127.0.0.1

]

start daemons: gmond, gmetad and httpd
cp /usr/share/ganglia /var/www/html/

In -s /var/www /html/conf.php /etc/ganglia/conf.php

open a browser and digit 127.0.0.1/ganglia to use interface, for now only client is the server

itself.

On client nodes:

yum ganglia-gmond

configure /etc/ganglia/gmond.conf as in server

customize metrics using gmetrics, suppose you have a script that produces cpu temperature

that you can send this value to the ganglia server:

gmetrics —name cputemp —value ‘. /scriptcpu‘ —type int16 —units celcius
in order for the customized metrics to be sent periodically you must include the abose
command in a script which is run by the cron daemon.

Configure pconsole

Operating System: Scientific Linux 6.2 x86_ 64
Software : pconsole 1.0 x86_ 64

perform ssh key exchange and authentication between management node and all the other

nodes;

download, build and install pconsole tar.gz from e.g, http://www.heiho.net/pconsole/;

48

e yum install xterm;

e In /usr/local/bin you should find the binary pconsole and the scripts pconsole.sh and
ssh.sh, make that this directory is in you path;

e If you want to vary the dimension and font of your terminal and control window modify
settings in pconsole.sh:
P_TERM__OPTIONS="-bg white -fg red -bc -geometry 42x10"

P_CONSOLE_ OPTIONS="-geometry 42x10"

[

e You may create alias in .bashrc in order to simplify execution of command: e.g., alias pcon
= /usr/local/bin nodenamel nodename2 ... ;

M Configure MPI

Operating System: Scientific Linux 6.2 x86_ 64
Software : mpich 1.2 x86_ 64

e make sure that ssh key exchange, name resolution (through dns or /etc/hosts) and a
common work place (e.g., network exported /home directory) is present on all the nodes;

e download and install on all nodes mpich2.x86_ 64 mpich2-devel.x86__ 64 mpich2-doc.x86_ 64
the first package includes mpi libraries, the second compilers and the third documentation
and examples;

e under your /home/user directory on the front-end node (master node) create file .mpd.conf
in which to write some security key, for example:
MPD__ SECRETWORD=mr45-j9z

e create file mpd.hosts that indicates node names on which the mpd daemon must run, for
example:
master
slavel
slave2
slave3

e create file exec.hosts that indicates on which hosts you want to execute you program and
how many CPUs on each node may be used, for example:
slavel:8
slave2:8
slave3:8

e for testing copy helloworld or some simple program from /usr/share/mpich2 compile it:
mpi -0 helloworld helloworld.c
(if mathematical libraries are needed, the -lm option is useful to link such libraries during
compile time)

49

run the mpd daemon on all nodes which will be used including your master specifying
communication protocol , file in which nodes are listed, how many nodes you want to use
from that list:

mpdboot -r ssh -f mdp.hosts -n 3

use mpdtrace to see on which nodes mpd is running

execute program indicating on which nodes and how many processes you want to spawn:
mpiexec -machinefile exec.hosts -n 16 ./helloworld

when you are finished with mpd turn off daemons:
mpdcleanup -f mpd.hosts

50

N Acronyms

BIND: Berkeley Internet Name Daemon
BIOS: Basic Input Output System

BMC: Broadband Management Controller
CPU: Central Processing Unit

DHCP: Dynamic Host Configuration Protocol
DNS: Domain Name System

FLOGTI: Fabric Login

FC: Fiber Channel

FLOPS: Floating point Operation Per Second
FRU: Field Removable Unit

FTP: File Transfer Protocol

GPFS: General Parallel File System

GPGPU: General Purpose Graphical Processing Unit
HBA: Host Bus Adapter

HCA: Host Channel Adapter

TCA: Target Channel Adapter

HD: Hard Drive

HPC: High Performance Computing

HTTP: Hypertext Transfer Protocol

IB: InfiniBand

IBM: International Business Machines

ICMB: Intelligent Chassis Management Bus
IP: Internet Protocol

IPMI: Intelligent Platform Management Interface
KVM: Keyboard Video Mouse

LAN: Local Area Network

LC: Little Connector

MIMD: Multiple Instruction Multiple Data
MISD: Multiple Instruction Single Data

MPI: Message Passing Interface

NFS: Network File System

OS: Operating System

PLOGTI: Port Login

PU: Processing Unit

PVM: Parallel Virtual Machine

RAID: Redundant Array of Independent Disks
RDMA: Remote Direct Memory Access

RSH: Remote Shell

RRD: Round Robin Database

SC: Standard Connector

S ID: Source ID

SIMD: Single Instruction Multiple Data
SISD: Single Instruction Single Data

SMB: System Management Bus

SMP: Symmetric Multi Processor

SOL: Serial Over LAN

SSH: Secure Shell

TCP: Transport Control Protocol

WAN: Wide Area Network

WWID: World Wide ID

o1

WWNN: World Wide Node Name
XML: Extensible Markup Language
XDR:External Data Representation

52

References

[1] GPFS Best Practices, Programming, Configuration, Environment and Performance Perspec-
tives. Tutorial for GPFS versions 3.3 and earlier
http://www.greatplains.net/download/attachments/131460/tutorial.v17.2.pdf
last accessed 17/09/2013.

[2] IBM System x3655 Installation Guide.
http://pdf.superwarehouse.com/specs/IBM_79854AU_manual.pdf
last accessed 17/09/2013.

[3] IBM System x3550 Installation and User’s Guide.
http://download.boulder.ibm.com/ibmdl/pub/systems/support/system_x_pdf/
00d9281 . pdf
last accessed 17/09/2013.

[4] IBM System Storage and DS4000 and Storage Manager V10.30.
http://wuw.redbooks.ibm.com/redbooks/pdfs/sg247010.pdf
last accessed 17/09/2013.

[5] IBM Using Intelligent Platform Management Interface (IPMI) under IBM Linux Platforms
http://pic.dhe.ibm.com/infocenter/1nxinfo/v3rOm0/topic/liaai.ipmi/liaaiipmi_
pdf .pdf
last accessed 17/09/2013.

[6] Introduction to Parallel Computing.
https://computing.1lnl.gov/tutorials/parallel_comp/
last accessed 15/09/2013.

[7] Knurr Manual CoolLoop Water-cooled cabinet for lateral attachment to server cabinets.
http://www.emersonnetworkpower.com/en-EMEA/Brands/Knurr/Documents/en/manuals/
CoolLoop-en-version_d.pdf

last accessed 17/09/2013.

[8] Nemeth E., Snyder G., Hein T. R., Whaley B.: “Unix and Linux Administration Handbook.
Fourth Edition”, pp. 14. Publishing Company, City, Country (2010).

[9] Sloan J. D.: “High Performance Linux Clusters: With Oscar, Rocks, openMosix, And MPI”,
pp. 14. Publishing Company, City, COUNTRY (2009).

[10] Soft Panorama: Linux Multipath.
http://www.softpanorama.info/Commercial_linuxes/Devices/multipath.shtml
last accessed 15/09/2013.

[11] Sterlin T. L.: “Beowulf Cluster Computing with Linux”, pp. 14. Publishing Company, City,
COUNTRY (2009).

[12] Tropens U., Erkens R., Muller-Friedt W., Wolafka R., Haustein N.: “Storage Networks
Explained”, pp. 14. Wiley, Chichester, UK (2009).

93

	Slide 1

