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Preface

These pages collect the experience gained by N.Pintus at Osservatorio Astro-
nomico Cagliari, under the supervision of M.Murgia, during a stage lasting
from February to July 2011 in the framework of the second level degree course
in Mathematics at University of Cagliari. The general plan of the stage was
to fit the observed radio data using computational and graphic tools (de-
scribed in Chapter 1) and to test a new algorithm used to solve the Bayes’
theorem (as shown in Section 2.2).

This work was organized into two parts: the first was dedicated to learn
the basics of these tools and, especially, the basics of the theory they dealt
with. The rest of the stage was focused on the test of the new algorithm on
the analysis of polarization images of the cluster of galaxies A2255.
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Introduction

The problem we dealt with is understanding magnetic fields in clusters of
galaxies. In particular, we want to estimate field strength and structure.
In this work, we have considered a technique based on the analysis of the
polarized emission from radio-galaxies, which are types of active galaxy that
are very luminous at radio wavelengths, with luminosities up to 1039 W
between 10 MHz and 100 GHz.
The Faraday effect (or Faraday rotation) is a magneto-optical phenomenon,
that is, an interaction between light and a magnetic field in a medium. The
Faraday effect causes a rotation of the plane of polarization which is linearly
proportional to the component of the magnetic field in the direction of prop-
agation. The polarized synchrotron radiation incoming from radio sources
located inside or behind a galaxy cluster, experiences the Faraday rotation
of the plane of polarization as it passes through the magnetized and ionized
intracluster medium:

ΨObs(ν) = ΨInt + (c/ν)2 ×RM (1)

where ΨObs(ν) is the observed polarization angle at a frequency ν and ΨInt

is the intrinsic polarization angle.
The RM is related to the thermal electron density, ne, and magnetic field
along the line of sight, B||, through the cluster by the equation:

RM = 812

∫ L

0

neB||dl radm−2 (2)

where B‖ is measured in µG, ne in cm−3 and L is the depth of the screen in
kpc.
The intracluster medium is filled with a tenuous plasma of ionized hydrogen
at very high temperatures of 107 − 108K. This hot gas radiates in the X-
ray band through the thermal free-free process. The electron density of the
plasma is generally not known, but it can be estimated under the hypothesis
that the intracluster medium is in hydrostatic equilibrium. In this condition,

ii



INTRODUCTION iii

it is often assumed that the gas density distribution can be described by the
standard β-model:

ne(r) = n0(1 + r2/r2C)
−3β/2 (3)

where r, n0 and rC are the distance from the cluster center, the central
electron density, and the cluster core radius, respectively. The parameters
of the β-model can be determined through X-ray satellite observations and
hence the electron gas density in the cluster can be reconstructed.

A simple single-scale magnetic field model

The intracluster magnetic field is likely turbulent, with a characteristic scale
much smaller than overall size of the cluster. Indeed, we expect that the
magnetic field inverts its direction many times along the line-of-sight. The
random nature of the intracluster magnetic field makes difficult to solve Eq. 2,
even for the simple case of the spherically symmetric β-model in Eq. 3. We
can, however, address the problem from a statistical perspective. Let assume
that the field is uniform in cells of size ΛC whose orientation in space is
completely random. If ΛC ≪ L, the RM is given by a random walk process
involving many cells along the line-of-sight. Indeed, the expectation value of
the Faraday rotation is null, 〈RM〉 = 0, while its dispersion is:

〈RM2〉1/2 ≡ σRM = RMcell

√
N,

where N = L/ΛC while RMcell = 812neB0/
√
3 · ΛC . Here we assumed for

isotropy B‖ = B0/
√
3, with B0 =

√
B2

x + B2
y + B2

z . We indeed expect that
the RM distribution is Gaussian distributed around zero with a dispersion of

σRM = 812neB0/
√
3 ·

√
ΛC .

This basic derivation consider constant gas density and magnetic field profiles
along the cluster. However, we must consider that ne decreases with increas-
ing radius according to Eq. 3. Moreover, also the magnetic field strength may
have a similar scaling. Indeed we assume that

B(r) = B0(ne/n0)
η (4)

here, B0 is the magnetic field strength at the cluster center while the index
η is expected in the range 0.5− 1.0.
The correct relation for the RM dispersion with the projected distance from
the cluster, r⊥, is obtained by integrating:
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〈RM2〉 = 8122

3
ΛC

∫
B2n2

edl =
8122

3
B2

0ΛCn
2
0

∫ (
1 +

r2

r2C

)−3β(1+η)

dl

=
8122

3
B2

0ΛCn
2
0

∫
1

(
1 + r2

r2C

)3β(1+η)
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= 2
8122

3
B2

0ΛCn
2
0

∫ ∞

0

1
(
1 +

r2⊥
r2C

+ l2

r2C

)3β(1+η)
dl;

involving the Abel Transform:

∫ ∞

0

ladl

(m+ lb)c
=

m
a+1−bc

b

b

[Γ(a+1
b
Γ(c− a+1

b
)

Γ(c)

]
;

(
a > −1, b > 0,m > 0, c >

a+ 1

b

)

we obtain:

〈RM2〉 = σ2
RM − 〈RM〉2 = 2

8122

3
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2
0
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0
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2
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)
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√
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r2⊥
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)
1−6β(1+η)

2
Γ[3β(1 + η)− 1

2
]

Γ[3β(1 + η)]

So,

σRM(r⊥) = KB0Λ
1
2
Cn0r

1
2
C

1

(1 + r2⊥/r
2
C)

6β(1+η)−1
4

√
Γ[3β(1 + η)− 1

2
]

Γ[3β(1 + η)]
(5)

where K = 812√
3

4
√
π is a constant depending on the integration path over the

gas density distribution: K = 624 if the source lies completely beyond the
cluster, and K = 441 if the source is halfway the cluster.



Chapter 1

A short description of Abell
2255

The existence of magnetic fields in the intracluster medium in clusters of
galaxies is established through different methods of analysis, and the most
important evidence for the presence of cluster magnetic fields comes from
radio observations. Magnetic fields are revealed through the synchrotron
emission of cluster-wide diffuse sources, such as ”radio halo” or ”relics”, and
from studies of the RM of polarized radio galaxies.

In any case, the presence of a magnetized plasma between an observer
and a radio source changes the properties of the polarized emission from the
radio source. Radio halo and relics are extended but very faint sources on
the contrary radio galaxies are compact but can be very bright. Therefore,
the latter are suitable for the RM analysis along specific line-of-sights so
that a set of information on clusters magnetic fields can be determined in
conjunction with X-ray observations of the hot gas.

We considered the cluster A2255, which is a rich cluster with signs of
undergoing a merger event. It is particularly suitable to study the intracluster
magnetic field because it is characterized by the presence of a diffuse radio
halo source at the cluster center, a relic source at the cluster periphery, and
several embedded radio galaxies. The radio halo of A2255 shows filaments of
strong polarized emission: the distribution of the polarization angles in the
filaments indicates that the cluster magnetic field fluctuates up to scales of
400 kpc in size.

A2255 hosts several radio galaxies, four of them J1712.4+6401, J1713.3+6347,
J1713.5+6402 and J1715.1+6402, have been selected for the analysis on the
basis of their high flux density, extension, and the presence of polarized emis-
sion [1]. Now, we make a short description of each source.
J1712.4+6401: the source has a narrow-angle tail structure and it is located

1
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Table 1.1: The radio sources analyzed in this work

Source Nickname r⊥ σRM 〈ERR〉 nbeam
(kpc) (rad/m2) (rad/m2)

J1712.4+6401 B 315 86.8 2.3 24.3
J1713.5+6402 E 450 66.3 1.7 11.1
J1715.1+6402 F 1398 3.3 2.2 8.3
J1713.3+6347 D 1570 6.9 2.6 18.7

in projection quite near to the cluster center (nickname B).

J1713.3+6347: this narrow-angle tail radio galaxy is located in the southern
part of the cluster far from the center (nickname D).

J1713.5+6402: the source has a total extension of about 35” and a double
structure with an unresolved core (nickname E).

J1715.1+6402: this wide-angle tail source, located in the periphery of the
cluster (nickname F).

For each source we calculated the RM image and the relative uncertainty
image by fitting the observed polarization angle as a function of frequency
(see Fig. 1.1). Our polarization data has been taken at six frequencies: 1385,
1465, 4535, 4885, 8085, and 8465 MHz. A few plots showing the RM fit are
presented in Fig. 1.2. A summary of the RM images is reported in Table 1.1.
The RM images have a resolution of 4 arcsecond and they are sampled at
4 pixels per beam, i.e. the image cellsize is 1 arcsecond. At the distance of
A2255, 1 arcsecond corresponds to a linear scale of 1.5 kpc.

An analysis of the rotation measure of radio sources sampling different
lines-of-sight across the cluster, together with an X-ray observation of the
intracluster gas, can be used to derive information on the strength and struc-
ture of the cluster magnetic field.

We made use of the FARADAY tool [2]. This dedicated C++ code permits
to investigate cluster magnetic fields by comparing the observations with
the expectations of different magnetic field models. Applying this method
to A2255, we aim to find the optimal magnetic field strength and structure
which best describe the data.

For the distribution of the thermal electron gas density we assumed a
standard β-model profile with parameters: rC = 432 kpc, n0 = 2.05 × 10−3

cm−3, and β = 0.74.
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Figure 1.1: Images of the RM (left column), RM error (central column), and
RM distribution (right column) for the four radio sources.
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Figure 1.2: Examples of fit of the polarization angle as a function of λ2 =
(c/ν)2 for the four radio sources. The RM represents the slope of the law in
Eq. 2 while the intercept is the intrinsic polarization angle.



Chapter 2

Bayesian inference of Faraday
rotation images

We want to interpret the Faraday rotation images of the radio galaxies in
A2255 using the single-scale model outlined in Chapter 1. Specifically, we
want to estimate the model free parameters: ΛC , the cell’s width, B0, the
magnetic field at the cluster center, and η, the slope of the magnetic field
scaling with gas density. The remaining model parameters, β, rC , n0, and
L, are considered fixed to the following values: β = 0.74, rC = 432 kpc,
n0 = 2.05× 10−3 cm−3, and while L, i.e. the position along the line-of-sight,
is valued for all the four sources at the cluster mid-plane.

In our attempt, we will made use of the Bayes’ theorem, which relates
the conditional and marginal probabilities of model M given the data D,
provided that the probability of D does not equal zero:

P (M |D) =
P (D|M)P (M)

P (D)
. (2.1)

The theorem express the posterior probability P (M |D) of the model given
the data in terms of the product between the likelihood function, P (D|M)
and the prior probability of the model, P (M). The term P (D) is called the
evidence and acts as a normalizing constant.

The likelihood is a function of the model parameters so that, given some
observed outcomes, is equal to the probability of those observed outcomes
given those parameter values1. The prior represents our belief about the
probability of a given configuration of model parameters before the data has
been taken. The evidence can be viewed as the average likelihood weighted

1Note, however, that the likelihood function is not a probability density function, i.e.
in general its integral is not equal to 1.

5
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by the prior over the parameter space:

P (D) =

∫
P (D|M)P (M)dM. (2.2)

In our problem the dataD is represented by the four RM images with their
relative error images while the model M is represented by any combinations
of the free parameters ΛC , B0, and η. Hence, in order to apply the Bayes
theorem we must specify the likelihood function and the prior probability
distribution function (pdf).

2.1 The two-points RM likelihood function

In the framework of the single-scale model we expect that the probability
of a certain RM value at a given position ~r⊥ = (x, y) is normal distributed
around zero with a dispersion given by Eq.5.

Lets consider to probability of the Faraday rotation values at two dis-
tinct position in the cluster, RM1 at position (x1, y1) and RM2 at posi-
tion (x2, y2). More specifically, we want to consider the probability of the
difference between the RM at these location, P (RM1 − RM2). We can
identify to extreme situations. If the separation between the two points
dr =

√
(x1 − x2)2 + (y1 − y2)2 is much smaller than ΛC , we expect that

probability for the RM difference is:

dr ≪ Λc → P (RM1 −RM2) = 0,

since both line-of-sights will likely intersect the same set of magnetic field cells
across the cluster. On the other hand, if the separation between the couple
of points is much larger than the cell size, dr ≫ ΛC , we expect that the two
RM values originate from distinct random walks and hence the probability
for their difference is still normal:

P (RM1 −RM2) =
1√
2πσ2

12

e
− (RM1−RM2)

2

2σ2
12

where σ2
12 = σ2

RM1 + err2RM1 + σ2
RM2 + err2RM2.

Now we consider all the four RM images in A2255 and we extract a large
set of couples of pixels with baselines both inside each source both between
different sources (see Fig.2.1). These set of couple forms our data D, and
we consider the likelihood function as the product of probabilities for the
difference of the RM between all these locations:
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P (D|M) = Πi 6=j{P (RMi −RMj)}. (2.3)

2.2 The n-simplex Bayesian solver

In this section we describe the algorithm we used to solve the Bayes’ theorem
in Eq. 2.2.

The FARADAY software package implements a Bayesian solver based on the
griding of the parameters space with a finite set of n-simplexes. Specifically,
an n-simplex is an n-dimensional polytope which is the convex hull of its
n+ 1 vertexes. For example, a 2-simplex is a triangle while a 3-simplex is a
tetrahedron, etc. . The algorithms exploits two stages: an initial griding and
a refining stage.

2.2.1 Initial griding

The algorithm starts with an initial sampling of the posterior over the param-
eters space. A number of points is extracted randomly and a n-dimensional
Delaunay triangulation is performed [3, 4]. Given a set of points in the
space, a Delaunay triangulation is such that no point of the set is inside the
hyper-circumsphere of the n-simplexes composing the grid.

The product of the likelihood and the prior, fi, is evaluated at the vertexes
of each n-simplexes, and the δ-evidence of the simplex is calculated by the
“trapezoidal rule”:

δP (D) = V × 1

n+ 1

n+1∑

i=1

fi, (2.4)

where V is the volume of the n-simplex. A first, approximated, value for the
evidence is then obtained by adding the contributes of all the n-simplexes in
the grid.

2.2.2 Refinement stage

After the initial griding is completed, we have a rough knowledge of the
posterior. Furthermore, we can calculate the probability for each region of
the parameters space enclosed in each n-simplex. We then proceed by re-
fining the grid until the evidence value converges to the desired fractional
precision. FARADAY offers different refinement schemes. We experimented
the “maximum probability” and the “random” schemes. In the former, the n-
simplex with the highest probability is selected for refinement. In the latter,
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a random extraction is performed from the cumulative distribution function.
In both cases, a new point is inserted in the grid at the position of the geo-
metric center of the selected simplex. The Delaunay triangulation is updated
and a refined posterior is calculated. The two schemes are characterized by
different pro and cons. The “max probability” refinement offers a faster con-
vergence but it is more susceptible to the presence of secondary peaks. The
“random” scheme is slower but less susceptible to the presence of secondary
peaks since it explores also low-probability regions of the posterior distribu-
tion.

A 2-dimensional example of the n-simplex Bayesian solver is shown in
Fig. 2.2. In this test we fixed the value of the magnetic field cell size to
Λc = 68 kpc and we find the posterior distribution of the parameters B0 and
η. The initial griding (performed with 5 points) is shown in the top-left panel.
The refined gridding is shown in the bottom-right panel. The 1-dimensional
marginalization for the model parameters are shown in green. Here we used
the “random” refinement scheme in which the simplexes to be re-sampled
are extracted randomly from the posterior cumulative distribution shown in
the insets of each panel.
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Figure 2.1: Location of the radio sources with respect to the cluster center
(cross). The lines represent the trans-source baselines between the couple of
pixels (red points) used to compute the RM likelihood. The green circle is
the cluster core radius.



CHAPTER 2. BAYESIAN INFERENCE OF FARADAY ROTATION IMAGES10

1 1.2 1.4 1.6 1.8 2
0.4

0.45

0.5

0.55

0.6
4 6 8 10

Posterior PDF

1 1.2 1.4 1.6 1.8 2
0.4

0.45

0.5

0.55

0.6
0 50 100

Posterior PDF

1 1.2 1.4 1.6 1.8 2
0.4

0.45

0.5

0.55

0.6
0 200 400 600

Posterior PDF

1 1.2 1.4 1.6 1.8 2
0.4

0.45

0.5

0.55

0.6
0 200 400

Posterior PDF

Figure 2.2: Example of 2-dimensional Delanauy triangulation of the B0 − η
plane. The cross indicates the position of the maximum posterior. The green
lines are the 1-dimensional marginalization for the posterior distribution of
the model parameters. The cumulative distribution function of the simplexes
probabilities is shown in the insets. The panels represent four different level
of grid refinement.



Chapter 3

Results

We used the algorithm described in the previous section to derive the poste-
rior distribution of the model parameters: B0, η, and ΛC . The RM likelihood
is calculated between 1964 pixel pairs. We selected one pixel every five to
ensure that the RM values are effectively independent (the resolution of the
radio images is sampled at 4 pixel per beam). The final 3-dimensional grid
is composed of about 13000 tetrahedrons.

We assumed uniform priors for all the three free model parameters. The
maximum posterior parameters are reported in Table 3.1. The reported
uncertainties refer to the boundary of the region of the posterior that includes
the 68% probability of the model parameters.

The magnetic field value at the cluster center is of about 1.3 µG. Since
η ≃ 0.5, the magnetic field energy scales as the gas density (B2 ∝ ngas)
hence the field weakens in the cluster periphery. At the distance of source
D, namely 1570 kpc from the cluster centre, the intracluster magnetic field
strenght is as low as 0.28 µG.

The magnetic field cell size is about 68 kpc. We note that the correspond-
ing size of RM patches is ΛRM = ΛC/π ≃ 22 kpc (see [2]), i.e. comparable
to size of the radio sources. This value is consistent with the large offset of
〈RM〉 observed for all the four radio sources.

Finally, in Fig. 3.1 we show the observed trend of σRM along with the
prediction of the single-scale magnetic field model. The model prediction
is obtained as a marginalization of the posterior distribution and provide a
good description of the data.
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Table 3.1: Maximum posterior parameters.

Parameter Maximum PDF units
B0 1.34± 0.11 µG
η 0.52± 0.04
ΛC 68± 7.5 kpc

0 500 1000 1500 2000

0

50

100

150

0 0.5 1 1.5
EVIDENCE

Figure 3.1: RM dispersion as a function of the projected distance from the
cluster center for the four radio galaxies (dots). The shaded region represents
the trend expected on the basis of the posterior distribution for the model
parameters.
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