

Developement of a framework for building tools for
managing observations with a generic telescope.

Alessandro Corongiu

Report N. 37, released: 30/07/2014

Reviewer: N. D'Amico, M. Murgia

Contents

1 Introduction 1

1.1 The SEADAS project . 1

1.2 The programming language . 2

1.3 The framework organization . 2

1.4 To whom is this report addressed . 3

2 Value classes 4

2.1 Introduction . 4

2.2 SDSValue class . 5

2.2.1 Class overview . 5

2.2.2 Technical description . 6

2.3 SDSEdit class . 12

2.3.1 Class overview . 12

2.3.2 Technical description . 12

2.4 SDSCombo class . 15

2.4.1 Class overview . 15

2.4.2 Technical description . 16

3 Information classes 19

3.1 Introduction . 19

3.2 SDSReceiver class . 20

3.2.1 Class overview . 20

3.2.2 Technical description . 20

3.3 SDSSession class . 23

3.3.1 Class overview . 23

3.3.2 Technical description . 23

i

3.4 SDSSource class . 25

3.4.1 Class overview . 25

3.4.2 Technical description . 25

3.5 SDSTelescope class . 27

3.5.1 Class overview . 27

3.5.2 Technical description . 28

4 Tools classes 31

4.1 Introduction . 31

4.2 SDSStatusButton class . 31

4.2.1 Class overview . 31

4.2.2 Technical description . 32

4.3 SDSTextEdit class . 35

4.3.1 Class overview . 35

4.3.2 Technical description . 36

4.4 SDSCatalogue class . 39

4.4.1 Class overview . 39

4.4.2 Technical description . 40

4.5 SDSScheduleManager class . 44

4.5.1 Class overview . 44

4.5.2 Technical description . 45

4.6 SDSObservationList class . 51

4.6.1 Class overview . 51

4.6.2 Technical description . 52

4.7 SDSLog class . 54

4.7.1 Class overview . 54

4.7.2 Technical description . 56

5 Device classes 62

5.1 Introduction . 62

5.2 SDSDevice class . 64

5.2.1 Class overview . 64

5.2.2 Technical description . 66

5.3 SDSCommThread class . 76

ii

5.3.1 Class overview . 76

5.3.2 Technical description . 77

5.4 SDSAntenna class . 86

5.4.1 Class overview . 86

5.4.2 Technical description . 91

5.5 SDSBackend class . 108

5.5.1 Class overview . 108

5.5.2 Technical description . 110

5.6 SDSManager class . 119

5.6.1 Class overview . 119

5.6.2 Technical description . 123

iii

iv

Chapter 1

Introduction

1.1 The SEADAS project

The Sardinia Radio Telescope1 (SRT) is a brand new observing facility located about 35 km

north of Cagliari, the main city of Sardinia. It has been designed for covering a frequency

range from 300MHz up to 100GHz, by hosting up to 13 receivers in various focal positions,

and for covering a wide set of topics in radio astronomy, including radio pulsars. The telescope

controlling software, called NURAGHE, has been developed in the Alma Common Software2 (ACS)

environment. NURAGHE functionalities allow the whole control of an observing session, from the

antenna setup to the source tracking, from the backends setup to the data acquisition.

The peculiar requirements for a radio pulsar observation lead to the non integration of all

pulsar backends in the NURAGHE framework, and triggered the necessity of a dedicated tool

for managing sessions involving observations of these celestial objects. The general design of this

software (Srt ExpAnded Data Acquisition System, SEADAS) has been already described in a

former internal report3 of Cagliari Observatory. The mentioned report explains the general

organization of the software, with particular attention at the hierarchy of the moduli for

managing the devices involved in an observation.

The complexity of a software like SEADAS suggested to organize the code by clearly

separating the features that are common to any telescope from the ones specific of SRT. Such a

separation has been obtained thanks to the polymorphism and inheritance concepts of the c++

programming language and, as a matter of fact, lead to the design of Qt derived classes that

can be used for building an application devoted to the management and control of an observing

session with a radio telescope.

1http://www.srt.inaf.it
2http://www.eso.org/projects/alma/develop/acs/
3Internal report N.35, March 1st 2014

1

1.2 The programming language

The choice of the programming language is grounded on the following arguments:

1) it has to be a fully supported language, from the point of view of the

maintenance and the development of the related libraries;

2) it has to easily allow the distinction between the telescopes’ common and

the SRT peculiar features;

3) it has to easily allow the management of events that can happen at an

unpredictable time.

The Qt44 toolkit has been identified as a language that meets the three mentioned

requirements. Qt4 is well known for being a powerful c++ based toolkit for building graphic

user interfaces (GUIs). An application whose GUI is based on it is usually designed so that the

core application is written in c++, while the GUI only is written in Qt4. In this specific case it

has been chosen to write the entire application in Qt4 since the main task is to handle events,

and those algorithms that could in principle be written in pure c++ play a role that does not

justify such a separation.

The first requirement is met since Qt4 is developed by a company that makes use of

this toolkit for commercial applications. The second requirement is given by the fact that

the Qt4 toolkit is built on the c++ programming language. The third requirement is met by

the Qt4 peculiar feature that allows to establish the so called signal/slot connection. The

occurrence of an event is identified by the emission of a signal that identifies the event itself,

and its connection with a slot means that a well identified function is called whenever the event

happens for analyzing the situation ad taking the opportune decisions.

1.3 The framework organization

The Seadas Developing System (SDS) framework consists of several classes built upon the Qt4

toolkit, i.e. classes that inherit from a Qt4 class. SDS classes can be divided in four groups,

accordingly to the role of the objects they provide:

1) Value classes: they provide objects for managing the value for a given

parameter;

4http://qt.digia.com/

2

2) Information classes: they provide objects for storing general purposes

informations;

3) Tool classes: they provide objects that play the role of useful tools for

the GUI;

4) Device classes: they provide objects for managing the devices that are

involved in any observation.

The following chapters of this report are devoted to the description of all SDS classes,

accordingly to the mentioned classification.

1.4 To whom is this report addressed

This report is addressed to software developers that aim to build a tool for controlling a software

by starting from the classes already implemented in the SDS framework. All SDS classes are here

explained in their functionalities, in their structure, and detailed explanations of all properties

are here provided.

3

Chapter 2

Value classes

2.1 Introduction

Value classes provide objects devoted for managing the value of parameter. These objects have

to meet the following requirements:

1) they are designed so that it becomes very easy, inside the source code,

declaring and instantiating the object and accessing to all its functions;

2) they allow the setting of the parameter via both an user’s action in the

GUI, and programmatically in all tasks devoted to set the value;

3) they effectively store the value and make it available, through opportune

query functions, to all tasks that require the value of the parameter;

4) they allow an immediate propagation of the newly set value to other

objects of the application, whenever necessary.

All mentioned requirements have been met by building a composite widget, whose graphic

properties can be set by a set of dedicated slots. The main elements of the object are a label that

shows in the GUI the parameter’s name, and a second object, here called the value managing

object, that allows the user to manually set the value and effectively stores it. Two sets of

functions allow the programmatic setup an query of the parameter, while a set of signals allow

to pass to other objects the newly set value.

The choice of the Qt class for the value managing object is related to the degree of freedom

in choosing the value for a given parameter. The length of the observation, e.g., is a parameter

whose value is subject to the only constraint of being a numeric value, while the coordinate

system, e.g., is a parameter whose values have to be constrained to be few and predefined. In

4

cases like the first one, the best choice for the value managing object is a single line editable

field, while in cases like the second one the best choice is a not editable combo box.

The mentioned parameters’ classification lead to build a base class, where it has been

implemented all functionalities that not depend on the constraint on the value, hence to the

Qt class for the value managing object. All implemented functionalities have been designed so

that the interaction with the value managing object is obtained by calling virtual functions.

Two classes inherit from the base class. The implementation of this classes consists in the

instantiation of the value managing object, i.e. in declaring it as an object of a well precise Qt

class, and in the consequent implementation of the virtual functions declared in the base class.

2.2 SDSValue class

2.2.1 Class overview

SDSValue class is the base class for all objects devoted to the managament of a parameter. It

is a composite QWidget designed for hosting two objects: a label for displaying the parameter’s

name or short description, member QLabel SDSValue::vLabel, and the value managing object,

not yet instantiated for the already mentioned reasons.

Four public slots

allow to set all graphic properties. Slot void SDSValue::setGeometry(QString psn, int

px, int py, int w1, int w2, int w3) indicates the position psn of the label with respect

to the value managing object, integers px and px are the SDSValue object’s upper corner’s

coordinates in the parent widget, while integers w1, w2 and w3 determine the dimensions and

the position for each member as follows:

1) psn = left or psn = right: w1 is the width for the label, w2 is the

width for the value managing object and w3 is their common height;

2) psn = top or psn = bottom: w2 is the height for the label, w3 is the

height for the value managing object and w1 is their common width;

Slot void SDSValue::setLabelStyle(QFrame::Shape sp,QFrame::Shadow sd) sets the

QFrame::Shape and QFrame::Shadow properties for member vLabel, while slot void

SDSValue::setTitle(QString ttl) sets the text to be displayed in the label. A

shortcut for setting at once all these properties, and also the parent widget, is given

by slot void SDSValue::setAll(QWidget *parent, QString psn, int px, int py, int

w1, int w2, int w3, QFrame::Shape sp, QFrame::Shadow sd, QString ttl).

5

The overloaded slot void SDSValue::setValue allows to set the new value for the

parameter. Its argument can be a QString character string, or an integer, a float or a double

numeric value.

Four slots allow to query the current value for the parameter. Slot virtual QString

SDSValue::value() returns the parameter value as a QString. It is a virtual slot since

it is also the function that effectively extracts the value from the value managing object.

The other three slots, double SDSValue::dValue(), float SDSValue::fValue() and int

SDSValue::iValue() return, if meaningful in the requested format, the parameter value as a

double, a float and an integer number respectively.

The overloaded signal void SDSValue::newValue is emitted, whenever a new value is set,

for passing to other objects the newly set value. Regardless of the way the value is set and of

the format, this signal is emitted for passing the new value as a QString and as compatible

numeric formats.

Two classes inherit from SDSValue, namely SDSEdit, that provides objects for managing

free value parameters, and SDSCombo, that provides objects for managing parameters that

can assume predefined values. Their implementation is grounded on the declaration of the

value managing object, an editable QLineEdit widget and a not editable QComboBox widget

respectively.

2.2.2 Technical description

A SDSValue object is a QWidget object designed for hosting two child widgets, namely a label

for displaying the parameter name and the object responsible for effectively managing the

parameter value, the so called value managing object.

The label object, member QLabel vLabel, has already been declared and all related

functionalities have already been implemented. The value managing object is instead not

yet declared, since its Qt class depends on the kind of parameter, as explained above. All

functionalities have been designed by separating the tasks that do not depend from its Qt

class from the ones that instead depend from this aspect. The result of this approach lead to

the declaration of some virtual functions that are called when the interaction with the value

managing object is required, and that have been implemented in the SDSValue subclasses with

the opportune tasks.

6

These virtual slots are:

1) virtual QString SDSValue::value(), for extracting the current value

and returning it as a QString object;

2) virtual void SDSValue::setNewValue(QString nv), for setting in

the value managing object the new value;

3) virtual void SDSValue::placeValue(int px, int py, int

wdh, int hgt), for resizing the value managing object and placing it

in the SDSValue widget.

The implementation for all other query and set is based on a call to virtual QString

SDSValue::value() and virtual void SDSValue::setNewValue(QString nv) respectively.

The two mentioned derived classes have been implemented as follows:

1) the value managing object is declared in the class header accordingly to

the chosen Qt class for it;

2) slot virtual QString SDSValue::value() is accordingly implemented

for extracting from the value managing object the parameter’s value as

a QString;

3) slot virtual void

SDSValue::setNewValue(QString nvl) is accordingly implemented for

setting the new value in the value managing object;

4) slot virtual void SDSValue::placeValue(int x, int y, int

w, int h) is accordingly implemented for placing the value managing

object inside the SDSValue widget, by calling the function that sets its

width and height equal to w and h respectively, and the function that

places its upper left corner at the x and y coordinates in the generic

parent widget;

5) custom functionalities are implemented;

7

Inheritance

Inherits from: QWidget

Inherited by: SDSEdit, SDSCombo

Public members

QLabel vLabel

This object is the label

devoted for displaying the parameter’s name or its short description. Its properties can be

set by calling slots void SDSValue::setLabelStyle(QFrame::Shape,QFrame::Shadow) and

void SDSValue::setTitle(QString ttl), or by calling the opportune QLabel functions.

Public slots

double SDSValue::dValue()

Returns the current parameter’s value as a double numerical value, if applicable.

float SDSValue::fValue()

Returns the current parameter’s value as a float numerical value, if applicable.

int SDSValue::iValue()

Returns the current parameter’s value as an integer numerical value, if applicable.

void SDSValue::setAll(QWidget *parent, QString psn, int px, int py, int w1,

int w2, int w3, QFrame::Shape sp, QFrame::Shadow sd, QFont vFont, QString

title)

Shortcut slot for setting at once all geometric and style properties for the object. This function

calls, in this given order:

1) QWidget::setParent(QWidget *parent);

2) SDSValue::setGeometry(QString psn,int px,int py,int w1,int

8

w2,int w3);

3) SDSValue::setLabelStyle(QFrame::Shape sp, QFrame::Shadow sd);

4) SDSValue::setTitle(QString title).

void SDSValue::setGeometry(QString psn, int px, int py,int w1, int w2, int w3)

This slot sets the SDSValue object’s geometric properties. Argument psn indicates the position

of vLabel with respect to the value managing object: top, bottom, left, right. Arguments

px and py are the coordinates of the SDSValue object’s top-left corner in the parent widget.

Arguments’ w1, w2 and w3 meaning depends on vLabel’s position, namely:

1) psn = left or psn = right:

w1 = vLabel width

w2 = value managing object width

w3 = vLabel and value managing object common height

SDSValue widget width = w1 + w2

SDSValue widget height = w3

2) psn = top or psn = bottom:

w1 = vLabel and value managing object common width

w2 = vLabel height

w3 = value managing object height

SDSValue object width = w1

SDSValue object height = w2 + w3

Accordingly to the dimensions of the two child widgets, their position in the SDSValue widget,

expressed in terms of the position of their top left corner results:

1) psn = left: vLabel at (0,0), value managing object at (w1,0)

2) psn = right: vLabel at (w2,0), value managing object at (0,0)

3) psn = top: vLabel at (0,0), value managing object at (0,w2)

4) psn = top: vLabel at (0,w3), value managing object at (0,0)

9

Once the dimensions and the positions for both child widgets are determined, vLabel is finally

resized and displaced, while the resizing and displacement for the value managing object is

performed by slot virtual void SDSValue::placeValue(int, int, int, int), called with

the opportune arguments.

void SDSValue::setLabelStyle(QFrame::Shape sp,QFrame::Shadow sd)

This slot sets the style properties for vLabel through QFrame::Shape and QFrame::Shadaow

properties.

void SDSValue::setTitle(QString title)

This slot sets to title the text displayed in vLabel.

void SDSValue::setValue(QString vl)

This slot sets the parameter’s value to QString vl, and calls protected slot void

SDSValue::valueChanged(), responsible for emitting signals that pass the newly set values

in various formats.

void SDSValue::setValue(double dvl)

This overloaded slot sets the parameter’s value to double dvl.

void SDSValue::setValue(float fvl)

This overloaded slot sets the parameter’s value to float fvl.

void SDSValue::setValue(int ivl)

This overloaded slot sets the parameter’s value to int ivl.

Virtual public slots

virtual QString SDSValue::value()

This slot is implemented in SDSValue subclasses for extracting the parameter’s value as a

string. Its implementation depends on the value managing object’s Qt class.

10

Protected slots

void SDSValue::valueChanged()

This slot is responsible for the emission of signals that pass the newly set value in various

formats. Its called by slot void SDSValue::setValue(QString vl) and always emits the

signal void SDSValue::newValue(QString vl), while signals that pass the value in numeric

formats are emitted only if the value itself can be treated as a number of that format.

Virtual protected slots

virtual void SDSValue::setNewValue(QString newVal)

This slot is implemented in SDSValue subclasses for setting in the value managing object the

parameter’s value. Its implementation depends on the value managing object’s Qt class.

virtual void SDSValue::placeValue(int px, int py, int wdh, int hgt)

This slots is implemented in SDSValue subclasses for resizing the value managing object and

placing it in the SDSValue widget. Arguments int px and int py indicate the position,

in the SDSValue widget, of the parameter’s managing object top left corner, while int

wdh and int hgt are its width and height respectively. It’s called by public slot void

SDSValue::setGeometry since these properties have to be set accordingly to the vLabel ones.

Signals

void SDSValue::newValue(QString)

This signal passes the newly set value for the parameter as a string.

void SDSValue::newValue(double)

This signal passes the newly set value for the parameter as a double numeric value.

void SDSValue::newValue(int)

This signal passes the newly set value for the parameter as a integer numeric value.

11

void SDSValue::newValue(float)

This signal passes the newly set value for the parameter as a float numeric value.

2.3 SDSEdit class

2.3.1 Class overview

The SDSEdit class is the fully implemented class that provides objects for managing parameters,

whose allowed values cannot be constrained to belong to a predefined set. This class has been

derived from the SDSValue class by declaring the value managing object as QLineEdit field,

by default set as editable, and by accordingly reimplementing all SDSValue virtual functions.

In order to take account for parameters to which it is mandatory to assign a value,

such a functionality has been implemented. Member bool isMandatory stores, by means

of a boolean value, whether it is mandatory to assign the parameter a value or not. Its

value is set by default to false, which means that the parameter value can remain unset,

and can be modified by calling slot void SDSEdit::setMandatory(bool mnd). Slot void

SDSEdit::setMissing(bool mss) modifies, for mandatory parameters, the background color

for QLineEdit field, setting it red if no value is stored (a string that contains only blanks is

considered an empty string) and white if a value has been given.

An SDSEdit object can be also used for displaying a status. In this case member QLineEdit

field has to be set as not editable, since this use has to avoid any user editing of the stored

value. Slot void SDSEdit::setEditable(bool edt) allows to modify this property by means

of a boolean argument.

Finally, slot void SDSEdit::clear() has been implemented for clearing the stored

parameter’s value.

2.3.2 Technical description

Class SDSEdit is derived from class SDSValue by following the prescription mentioned

in §2.2.2. Its implementation is based on the declaration of the value managing

object as QLineEdit field, consists in the reimplementation of the three slots that

have been declared as virtual in the SDSValue class, and in the established signal/slot

connection between signal void QLineEdit::editingFinished() from member field and

slot void SDSValue::valueChanged, a connection that ensures the emission of the void

SDSValue::newValue() signals whenever the parameter value is manually entered by the user.

12

Custom functionalities have been implemented as follows:

1) Clearing the value: slot void SDSEdit::clear() is a shortcut for calling

slot void QLineEdit::clear() for member field;

2) Setting the SDSEdit object as editable/not editable:

slot void SDSEdit::setEditable(bool) is a shortcut for calling void

QLineEdit::setReadOnly(bool) for member field;

3) Setting the mandatory property and accordingly managing the SDSEdit

object: member bool isMandatory stores the property, while slot

void SDSEdit::setMandatory(bool) sets the property, and slot void

SDSEdit::setMissing(bool) sets the graphic properties for member

field accordingly to the mandatory property and the newly set value;

Inheritance

Inherits from: SDSValue

Public members

QLineEdit field

This member is the value managing object. By default field is set as editable, and this

property can be changed by calling slot void SDSEdit::setEditable(bool edt).

bool isMandatory

This member holds the property that indicates whether a value for the managed parameter

has to be always set or not. By default its value is false, which means that the

parameter can remain unset, and this property can be changed by calling slot void

SDSEdit::setMandatory(bool mnd).

13

Public slots

void SDSEdit::clear()

This slot unsets the parameter, by clearing QLineEdit field.

void SDSEdit::setEditable(bool edt)

This slot sets whether the text of member QLineEdit field can be edited by the user, edt =

true, or not, edt = false.

void SDSEdit::setMandatory(bool mnd)

This slot sets the mandatory property for the managed parameter, by setting the value for

member bool isMandatory. Its argument is the value that member bool isMandatory has

to assume.

void SDSEdit::setMissing(bool mss)

This slot sets the background color for member QLineEdit field in mandatory SDSEdit

objects. It’s called by void SDSEdit::setNewValue(QString txt) whenever a new value

has to be set for the managed parameter. If the new value is an empty string, its called with

argument true and the background color is set to red. If instead the new value is not an empty

string, it’s called with argument false and the background color is set to white.

QString SDSEdit::value(), reimplemented from

virtual QString SDSValue::value()

This slot returns the current parameter’s value, in the QString format.

Protected slots

void SDSEdit::placeValue(int px,int py,int wdt, int hgt), reimplemented from

virtual void SDSValue::placeValue(int px,int py,int wdt, int hgt)

This slot places the top left corner of member QLineEdit field at coordinates (px,py),

and sets its width and height to wdt and hgt respectively. Its implementation calls void

QWidget::move(int px, int py) and void QWidget::resize(int wdt, int hgt).

14

void SDSEdit::setNewValue(QString txt), reimplemented from

virtual void SDSValue::setNewValue(QString txt)

This slot is responsible for effectively setting the new value for the managed parameter, by

setting the text in QLineEdit field equal to the content of QString txt. If the managed

parameter is mandatory, this slot also calls void SDSEdit::setMissing(bool mss) with the

opportune argument. A sequence of blanks characters is considered an empty string.

Internal signal/slot connections

Signal void QLineEdit::editingFinished(), emitted by member QLineEdit field

to slot void SDSValue::valueChanged()

This connection ensures that slot void SDSValue::valueChanged() is called when the user

has finished to manually set the new parameter’s value by typing it in QLineEdit field.

2.4 SDSCombo class

2.4.1 Class overview

The SDSCombo class is the fully implemented class that provides objects for managing

parameters, whose allowed values belong to a predefined set. This class has been derived

from the SDSValue class by declaring the value managing object as QComboBox field, set by

default as not editable, and by accordingly reimplementing all SDSValue virtual functions.

The allowed parameter’s values are loaded into the QComboBox field by slot void

SDSCombo::loadItems(QString datasource), whose argument is the text file that contains

all predefined values. This file has to be indicated with its absolute path.

Since the selected item for a QComboBox object can be set and queried through the

index the item is assigned in the items list, some functionalities have been implemented

for allowing to manage the parameter with respect to this peculiar feature. Slot void

SDSCombo::setIndex(int idx) allows to set the item whose index is the value stored in int

idx, while slot int SDSCombo::index() returns the index of the currently selected item, and

signal void SDSCombo::newIndex(int), emitted whenever the selection in QComboBox field

changes, allows to pass to other objects the index of the newly set item.

15

2.4.2 Technical description

Class SDSCombo is derived from class SDSValue by following the prescription mentioned

in §2.2.2. Its implementation is based on the declaration of the value managing object

as QComboBox field, consists in the reimplementation of the three slots that have been

declared as virtual in the SDSValue class, and in the established signal/slot connection

between signal void QComboBox::currentIndexChanged(int) from member field and slot

void SDSCombo::indexChanged(int), a connection that ensures the emission of the void

SDSValue::newValue() signals whenever the parameter value is manually entered by the user.

Custom functionalities have been implemented as follows:

1) Loading the list of allowed values: slot void

SDSCombo::loadItems(QString items list) reads the values from a

text file and accordingly builds the QComboBox field items list;

2) Value

management by using the items list index: slot int SDSCombo::index()

is a shortcut for calling int QComboBox::currentIndex() for member

field, slot void SDSCombo::setIndex(int) is a shortcut for calling

void QComboBox::setCurrentIndex(int) for member field, slot void

SDSCombo::indexChanged(int) ensures that SDSValue signals are

emitted and also emits the void SDSCombo::newIndex(int);

Inheritance

Inherits from: SDSValue

Public members

QComboBox field

This member is the value managing object. By default it is set as not editable,

and the predefined values for the managed parameter are loaded by calling slot void

SDSCombo::loadItems(QString datasource).

16

Public slots

int SDSCombo::index()

This slot returns the index of the current item for QComboBox field.

void SDSCombo::loadItems(QString datasource)

This slot loads into the QComboBox field items list the allowed values for the managed

parameter. Its argument is the text file containing the values to be loaded into the items

list, and has to be indicated with its full path. Items have to be organized in a single column.

void SDSCombo::setIndex(int idx)

This slot selects in QComboBox field the item, whose index in the items list is indicated by

int idx.

QString SDSCombo::value(), reimplemented from

virtual QString SDSValue::value()

This slot returns a string containing the current item text, in the QString format.

Protected slots

void SDSCombo::indexChanged(int idx)

This slot is responsible for the emission of signals for passing the index of the newly set item

and its content. It is triggered by the signal void QComboBox::currentIndexChanged(int),

from QComboBox field, thanks to a signal/slot connection. It emits the signal void

SDSCombo::newIndex(int) and calls slot void SDSValue::valueChanged().

void SDSCombo::placeValue(int px,int py,int wdt, int hgt), reimplemented from

virtual void SDSValue::placeValue(int px,int py,int wdt, int hgt)

This slot places the top left corner of member QComboBox field at the coordinates (px,py),

and sets its width and height to wdt and hgt respectively.

void SDSCombo::setNewValue(QString txt), reimplemented from

17

virtual void SDSValue::setNewValue(QString txt)

This slot selects in QComboBox field the item that corresponds to the string stored in QString

txt.

Signals

void SDSCombo::newIndex(int)

This signal passes the index of the newly set item in QComboBox field. It is by default called

by slot void SDSCombo::indexChanged(int idx).

Internal signal/slot connections

Signal void QComboBOx::currentIndexChanged(int), emitted by member QComboBox field

to slot void SDSCombo::indexChanged(int)

This connection ensures that slot void SDSCombo::indexChanged(int) is called whenever the

selected item changes in QComboBox field.

18

Chapter 3

Information classes

3.1 Introduction

Data files contain a set of scientific, technical and management informations which are not

necessary to the backends for their signal processing, but are required for the data real time

and/or offline processing, for the reconstruction of the observation history and for an easy

organization of the observations database.

These informations are usually related to the scientific project, to the source and the

receiver’s parameters. In a modular application they are set in the object that manages the

observing session and the antenna, and they have to be transfered somehow to the ones devoted

to the backends control, so that they can be stored in the header of the data file.

In order to easily transfer these informations, classes have been designed for organizing

them in well defined arguments and providing objects that allow an organized management

and transferring for this kind of informations.

The identified arguments are:

1) the observing session;

2) the source to be observed;

3) the receiver and its setup;

4) the telescope’s basic parameters.

Informations in these classes are stored in dedicated QString members without setting

any predefined format. Classes that manage these informations are SDSSession for the

observing session, SDSSource for the target source, SDSReceiver for the receiver to be used,

and SDSReceiver for the telescope.

19

3.2 SDSReceiver class

3.2.1 Class overview

SDSReceiver class provides objects that store all informations about the receiver. The

informations that can be stored are:

1) the receiver name;

2) the string that identifies the the receiver’s band;

3) the lower limit for the frequency band;

4) the upper limit for the frequency band;

5) the number of active beams, which has to be set equal to one for single

beam receivers;

6) the reference beam, which has to be set equal to one for single beam

receivers;

7) the detected polarization, linear or circular.

3.2.2 Technical description

A SDSReceiver object is a QObject whose members are protected QString variables, each of

them can be set and queried by calling dedicated slots. All informations can be set at once

by calling slot void SDSReceiver::setReceiver(SDSReceiver *rec), whose argument is a

reference to an object of this class.

Inheritance

Inherits from: QObject

Protected members

QString band

This object stores the frequency band identification

string. Its value is set by slot void SDSReceiver::setBand(QString str) and queried by

20

slot QString SDSReceiver::bandID().

QString fmin

This object stores the value for the lower limit of the receiver’s frequency band. Its value is set

by slot void SDSReceiver::setLowerFrequency(QString str) and queried by slot QString

SDSReceiver::lowerFrequency().

QString fmax

This object stores the value for the upper limit of the receiver’s frequency band. Its value is set

by slot void SDSReceiver::setUpperFrequency(QString str) and queried by slot QString

SDSReceiver::upperFrequency().

QString name

This object stores the receiver’s name. Its value is set

by slot void SDSReceiver::setReceiverName(QString str) and queried by slot QString

SDSReceiver::receiverName().

QString nBeams

This object stores the number of the receiver’s active beams. Its value is set by

slot void SDSReceiver::setNumberOfBeams(QString str) and queried by slot QString

SDSReceiver::numberOfBeams(). For single beam receivers it has to be set to 1.

QString polType

This object stores the receiver’s detected polarization, namely circular or linear. Its value is

set by slot void SDSReceiver::setPolarization(QString str) and queried by slot QString

SDSReceiver::polarization().

QString refBeam

This object stores the number that identifies the beam adopted as reference for the telescope

pointing. Its value is set by slot void SDSReceiver::setReferenceBeam(QString str) and

queried by slot QString SDSReceiver::referenceBeam(). For single beam receivers it has to

be set to 1.

21

Public slots

QString SDSReceiver::bandID()

This slot returns the string that identifies the receiver’s frequency band, as stored in member

QString band.

QString SDSReceiver::numberOfBeams()

This slot returns the number of the receiver’s active beams, as stored in member QString

nBeams.

QString SDSReceiver::lowerFrequency()

This slot returns the lower limit of the receiver’s frequency band, as stored in member QString

fmin.

QString SDSReceiver::polarization()

This slot returns the receiver’s detected polarization, as stored in member QString polType.

QString SDSReceiver::receiverName()

This slot returns the receiver’s name, as stored in member QString name.

QString SDSReceiver::referenceBeam()

This slot returns the number that identifies the beam used as reference for the telescope

pointing, as stored in member QString refBeam.

void SDSReceiver::setBand(QString bnd)

This slot sets to bnd the value for member QString band.

void SDSReceiver::setNumberOfBeams(QString nbm)

This slot sets to nbm the value for member QString nBeams.

void SDSReceiver::setLowerFrequency(QString lfq)

This slot sets to lfq the value for member QString fmin.

void SDSReceiver::setPolarization(QString lpz)

22

This slot sets to plz the value for member QString polType.

void SDSReceiver::setReceiver(SDSReceiver *rcv)

This slot sets all receiver’s informations, which are stored in the SDSReceiver object pointed

by SDSReceiver *rcv.

void SDSReceiver::setReceiverName(QString nm)

This slot sets to nm the value for member QString name.

void SDSReceiver::setReferenceBeam(QString rbm)

This slot sets to rbm the value for member QString refBeam.

void SDSReceiver::setUpperFrequency(QString ufq)

This slot sets to ufq the value for member QString fmax.

QString SDSReceiver::upperFrequency()

This slot returns the upper limit of the receiver’s frequency band, as stored in member QString

fmax.

3.3 SDSSession class

3.3.1 Class overview

SDSSsession class provides objects that store the essential informations about the observing

session. The informations that can be stored are:

1) the project title;

2) the project code, usually but not necessarily assigned by the telescope

Time Allocation Committee;

3) the name(s) of the observer(s).

3.3.2 Technical description

A SDSSession object is a QObject whose members are protected QString variables, each of

them can be set and queried by calling dedicated slots. All informations can be set at once

by calling slot void SDSSession::setSession(SDSSession *session), whose argument is a

23

reference to an object of this class.

Inheritance

Inherits from: QObject

Protected members

QString ProjectName

This member stores the title of the scientific project. Its value is set by

slot void SDSSession::setProjectName(QString str) and queried by slot QString

SDSSession::projectName().

QString ProjectCode

This member stores the project code, usually assigned by the telescope Time Allocation

Committee. Its value is set by slot void SDSSession::setProjectCode(QString str) and

queried by slot QString SDSSession::projectCode().

QString ObserverName

This member stores the name(s) of the observer(s). Its value is

set by slot void SDSSession::setObserverName(QString str) and queried by slot QString

SDSSession::observerName().

Public slots

QString SDSSession::observerName()

This slot returns the observer(s) name(s), as stored in member QString ObserverName.

QString SDSSession::projectCode()

This slot returns the project’s identification code, as stored in member QString ProjectCode.

QString SDSSession::projectName()

24

This slot returns the project’s name, as stored in member QString ProjectName.

void SDSSession::setObserverName(QString on)

This slot sets to on the value for member QString ObserverName.

void SDSSession::setProjectCode(QString pc)

This slot sets to pc the value for member QString ProjectCode.

void SDSSession::setProjectName(QString pn)

This slot sets to pcn the value for member QString ProjectName.

void SDSSession::setSession(SDSSession *session)

This slot sets all session’s informations, which are stored in the SDSSession object pointed by

SDSSession *session.

3.4 SDSSource class

3.4.1 Class overview

SDSSource class provides objects that store the essential informations about the source to be

observed. The informations that can be stored are:

1) the source name;

2) the coordinate system through which the source coordinates are

expressed;

3) the value for the source longitude in the selected coordinate system;

4) the value for the source latitude in the selected coordinate system;

3.4.2 Technical description

A SDSSource object is a QObject whose members are protected QString variables, each of them

can be set and queried by calling dedicated slots. All informations can be set at once by calling

slot void SDSSource::setSource(SDSSource *source), whose argument is a reference to an

object of this class.

25

Inheritance

Inherits from: QObject

Protected members

QString CoordSys

This member stores the coordinate system through which the source coordinates are expressed.

Its value is set by slot QString SDSSource::setCoordSys() and queried by slot void

SDSSource::coordSys(QString cs).

QString Latitude

This member stores the value for the latitude coordinate in the selected coordinate system. Its

value is set by slot void SDSSource::setLatitude(QString lt) and queried by slot QString

SDSSource::latitude().

QString Longitude

This member stores the value for the longitude coordinate in the selected coordinate system.

Its value is set by slot void SDSSource::setLongitude(QString lg) and queried by slot

QString SDSSource::longitude().

QString Name

This member stores the

source name. Its value is set by slot void SDSSource::setName(QString nm) and queried

by slot QString SDSSource::name().

Public slots

QString SDSSource::coordSys()

This slot returns the coordinate system through which the source’s longitude and latitude are

expressed, as stored in member QString CoordSys.

26

QString SDSSource::latitude()

This slot returns the source’s latitude in the selected coordinate system, as stored in member

QString Latitude.

QString SDSSource::longitude()

This slot returns the source’s longitude in the selected coordinate system, as stored in member

QString Longitude.

QString SDSSource::name()

This slot returns the source’s name, as stored in member QString Name.

void SDSSource::setCoordSys(QString cs)

This slot sets to cs the value for member QString CoordSys.

void SDSSource::setLatitude(QString lt)

This slot sets to lt the value for member QString Latitude.

void SDSSource::setLongitude(QString lg)

This slot sets to lg the value for member QString Longitude.

void SDSSource::setName(QString nm)

This slot sets to nm the value for member QString Name.

void SDSSource::setSource(SDSSource *source)

This slot sets all source’s informations, which are stored in the SDSSource object pointed by

SDSSource *source.

3.5 SDSTelescope class

3.5.1 Class overview

SDSTelescope class provides objects that store the essential informations about the telescope.

The informations that can be stored are:

27

1) the telescope name;

2) the code that identifies the telescope in data analysis softwares;

3) the short code that identifies the telescope in data analysis softwares;

4) the geographic longitude of the telescope’s site;

5) the geographic latitude of the telescope’s site;

6) the geographic altitude of the telescope’s site;

3.5.2 Technical description

A SDSTelescope object is a QObject whose members are protected QString variables, each

of them can be set and queried by calling dedicated slots. All informations can be set at

once by calling slot void SDSTelescope::setTelescope(SDSTelescope *telescope), whose

argument is a reference to an object of this class.

Inheritance

Inherits from: QObject

Protected members

QString Altitude

This member stores the value for the geographic altitude of the telescope site. Its

value is set by slot QString SDSSource::setAltitude() and queried by slot QString

SDSSource::altitude().

QString Code

This member stores the code that identifies the telescope in the data analysis softwares.

Its value is set by slot QString SDSTelescope::setCode() and queried by slot QString

SDSTelescope::code().

QString Latitude

This member stores the value for the geographic latitude of the telescope’s site. Its

28

value is set by slot QString SDSTelescope::setLatitude() and queried by slot QString

SDSTelescope::latitude().

QString Longitude

This member stores the value for the geographic longitude of the telescope’s site. Its

value is set by slot QString SDSTelescope::setLongitude() and queried by slot QString

SDSTelescope::longitude().

QString Name

This member stores the telescope name. Its value is set by slot QString

SDSTelescope::setName() and queried by slot QString SDSTelescope::name().

QString ShortCode

This member stores the short code that identifies the telescope in the data analysis softwares.

Its value is set by slot QString SDSTelescope::setShortCode() and queried by slot QString

SDSTelescope::shortCode().

Public slots

QString SDSTelescope::altitude()

This slot returns the geographic altitude of the telescope site, as stored in member QString

Altitude.

QString SDSTelescope::code()

This slot returns the telescope’s code, as stored in member QString Name.

QString SDSTelescope::latitude()

This slot returns the geographic latitude of the telescope site, as stored in member QString

Latitude.

QString SDSTelescope::longitude()

This slot returns the geographic longitude of the telescope site, as stored in member QString

Longitude.

29

QString SDSTelescope::name()

This slot returns the telescope’s name, as stored in member QString Name.

QString SDSTelescope::shortCode()

This slot returns the telescope’s short code, as stored in member QString ShortCode.

void SDSTelescope::setAltitude(QString lt)

This slot sets to at the value for member QString Altitude.

void SDSTelescope::setCode(QString cd)

This slot sets to cd the value for member QString Code.

void SDSTelescope::setLatitude(QString lt)

This slot sets to lt the value for member QString Latitude.

void SDSTelescope::setLongitude(QString lg)

This slot sets to lg the value for member QString Longitude.

void SDSTelescope::setName(QString nm)

This slot sets to nm the value for member QString Name.

void SDSTelescope::setShortCode(QString scd)

This slot sets to scd the value for member QString ShortCode.

void SDSTelescope::setTelescope(SDSTelescope *telescope)

This slot sets all telescope’s informations, which are stored in the SDSTelescope object pointed

by SDSTelescope *telescope.

30

Chapter 4

Tools classes

4.1 Introduction

Tools classes provide objects that are not strictly required for running an observation, but may

be helpful for the devices and session management, for the observation setup and monitoring.

A first tool is a button devoted to both enable and disable a feature, in a very general sense,

and to display the feature status by changing its graphic properties. This object is provided

by class SDSStatusButton.

A second tool is a frame that allows the user the interaction with a text by mouse button

clicks. Several tools require this kind of interaction, namely the source catalogue (mouse clicks

allow the selection of the source), the schedule manager (mouse clicks allow the selection

of the schedule lines to be effectively done) and the observation list (mouse clicks allow the

rearrangement of the selected schedule lines). For this reason a base class, SDSTextEdit, has

been designed by implementing the base functionalities that allow text−mouse interactions,

and three classes have been developed, whose core is a SDSTextEdit object: SDSCatalogue

for the source catalogue, SDSScheduleManager for the management of the schedule and

SDSObservationList for the management of the observation list.

Finally, the key role played by system messages lead to the design of a tool for both

displaying these messages and storing them in a file. Class SDSLog provides objects that ensure

these functionalities.

4.2 SDSStatusButton class

4.2.1 Class overview

Class SDSStatusButton provides a widget that acts both as a button for both enabling and

disabling a feature, in a very general sense, and as a label that displays the feature status.

31

The feature status is indicated by the background color, red if deactivated and green if

activated, and by opportune texts that illustrate the current status. The feature status is also

stored by means of a boolean variable, whose values false and true respectively indicate the

deactivated and activated status.

4.2.2 Technical description

An SDSStatusButton object is a QLabel, whose button properties result by setting its focus

policy to Qt::ClickFocus,

and by implementing slot void QMouseEvent::mouseReleaseEvent(QMouseEvent *event) so

that the signal void SDSStatusButton::activate(bool) is emitted for passing the boolean

value indicating the requested status. Member bool isEnabled stores the feature current

status, hence the boolean value passed by signal void SDSStatusButton::activate(bool)

is always !isEnabled. Two QString objects, QString offTxt and QString onTxt, store

the texts to be displayed when the feature is respectively deactivated and activated. Slot

void SDSStatusButton::setTexts(QString it, QString ot) allows to set their content

at once. Public slot void SDSStatusButton::setEnabled(bool bl) changes the object’s

graphic properties accordingly to the feature status. It is NOT automatically called by

slot mouseReleaseEvent(QMouseEvent *event): this setting is intentional since the feature

activation and deactivation may require a task that may not be successfully accomplished. The

connection between the feature and the related SDSStatusButton object has to be implemented

as follows:

1) In the object, whose feature is managed by a SDSStatusButton object,

a slot has been implemented for triggering both the deactivation and

activation tasks. This slot has to take a boolean argument, and has to

be implemented so that the deactivation task is called if the argument is

false and the activation one if the argument is true.

2) A signal/slot connection has

to be established so that the above mentioned slot is called whenever

the signal void SDSStatusButton::setEnabled(bool bl) is emitted.

3) The object, whose feature is managed by a SDSStatusButton object, has

to emit a signal whenever the feature status change. This signal has to

pass the boolean value false if the new status is deactivated, true if

activated.

32

4) A second signal/slot connection has to be established between the object’s

above mentioned signal

and the slot void SDSStatusButton::setEnabled(bool bl), so that

the SDSStatusButton object’s graphic properties change accordingly to

the new status.

The dimensions and position in the parent widget for a SDSStatusButton object can be

set at once by calling slot SDSStatusButton::setGeometry(int px, int py, int wdh, int

hgt), whose arguments are, in the indicated order, the x and y coordinate of its top left corner

in the parent widget, its width and height.

Inheritance

Inherits from: QLabel

Public members

bool isEnabled

This member stores the feature status by mean of a boolean value, namely false if the feature

is deactivated, true if the feature is activated.

QString offTxt

This member stores the text to be displayed when the feature is deactivated. Its value can

be set by calling slot void SDSStatusButton::setTexts(QString it, QString ot) (second

argument).

QString onTxt

This member stores the text to be displayed when the feature is activated. Its value can be set by

calling slot void SDSStatusButton::setTexts(QString it, QString ot) (first argument).

33

Protected members

QPalette Pal

This member stores the color palette for the background color to be displayed accordingly to

the feature status.

Public slots

void SDSStatusButton::setEnabled(bool bl)

This slot sets the background color, the displayed text and the graphic properties for the

SDSStatusButton accordingly to the status to be displayed. If the related feature is activated

the argument has to be the boolean value true. In this case the displayed text is the

string stored in member QString onTxt, the background color is set to Qt::green and

the QFrame::Shadow property is set to QFrame::Sunken. If instead the related feature is

deactivated the argument has to be the boolean value false. In this case the displayed text is

the string stored in member QString offTxt, the background color is set to Qt::red and the

QFrame::Shadow property is set to QFrame::Raised.

void SDSStatusButton::setTexts(QString it, QString ot)

This slot sets the strings stored in members onTxt (first argument) and offTxt (second

argument).

void SDSStatusButton::setGeometry(int px, int py, int wdh, int hgt)

This slot places the SDSStatusButton widget’s top left corner at coordinates (px,py) in the

parent widget, and sets its width and height to wdh and hgt respectively.

Protected slots

void SDSStatusButton::mouseReleaseEvent(QMouseEvent *event), reimplemented from

void QMouseEvent::mouseReleaseEvent(QMouseEvent *event)

This slot is responsible for giving the button behaviour to the SDSStatusButton object. It

determines if it has been left-clicked by checking for two conditions to be simultaneously met,

namely the mouse left button has been clicked and the SDSStatusButton object has focus.

34

If so the signal void SDSStatusButton::activate(bool) is emitted, and the passed value is

always !isEnabled.

Signals

void SDSStatusButton::activate(bool)

This signal passes the boolean value that corresponds to the requested action, namely it passes

false if a deactivation is requested, true if instead an activation is requested.

4.3 SDSTextEdit class

4.3.1 Class overview

Class SDSTextEdit provides the core objects for building tools that allow mouse−text

interaction. Mouse buttons to which an action can be assigned are the left and the mid button.

The enum SDSTextEdit::action lists the possible actions:

0) SDSTextEdit::NoAction: no action is assigned to the mouse button;

1) SDSTextEdit::CutLine: the whole line under the mouse pointer is

removed from the displayed text, the text below the cut line is shifted

upwards and a signal is emitted for passing a string containing the cut

text;

2) SDSTextEdit::SelectLine: the whole line under the mouse pointer

is selected, and a signal is emitted for passing a string containing the

selected text;

3) SDSTextEdit::PasteLine: a previously selected or cut line is inserted

at the mouse pointer position; if there is some text at that position, that

text is shifted downwards;

4) SDSTextEdit::CustomAction1: an user’s custom action;

5) SDSTextEdit::CustomAction2: a second user’s custom action;

An action is assigned to a mouse button by setting the value for members

action leftAct and action midAct, that store the action assigned to the left

35

and middle button respectively. Their value is set by calling public slot void

SDSTextEdit::setActions(SDSTextEdit::action la, SDSTextEdit::action ma), whose

first and second argument are the values to be assigned to action leftAct and action midAct

respectively.

4.3.2 Technical description

A SDSTextEdit object is a read only QPlainTextEdit object upon which functionalities have

been implemented for allowing the mouse−text interaction. Three default actions have been

already implemented, and the possibility has been also given of implementing custom actions.

The possible actions to be assigned to the left and middle mouse button are listed in the

enum SDSTextEdit::action structure and are stored in members action leftAct and action

midAct respectively, whose default value is SDSTextEdit::NoAction.

Slot void SDSTextEdit::mouseReleaseEvent(QMouseEvent *event), reimplemented

from void Qwidget::mouseReleaseEvent(QMouseEvent *event), is the core of the

mouse−text interaction. It reads the button that has been clicked, then the action assigned to

the clicked button, and accordingly calls the slot that performs the assigned action. Slots

void SDSTextEdit::cutLine(QMouseEvent *event), void SDSTextEdit::selectLine()

and void SDSTextEdit::pasteLine(QMouseEvent *event) have been fully implemented for

respectively cutting, selecting the clicked line and inserting at the mouse pointer position

a previously cut or selected line. Whenever a line is selected or cut, the signal void

SDSTextEdit::newSelection(QString str) is emitted for passing to other objects a string

containing the text line. Virtual slots virtual void SDSTextEdit::customAction1()

and virtual void SDSTextEdit::customAction2() are called if the assigned action

respectively is SDSTextEdit::CustomAction1 SDSTextEdit::CustomAction2. They have to

be reimplemented in a SDSTextEdit subclass if custom actions on text are required.

Private member QString selection stores the content of the last cut or selected line, and

QTextCursor *tc is a pointer to the text cursor of the displayed document.

Inheritance

Inherits from: QPlainTextEdit

36

Properties

enum SDSTextEdit::action {NoAction, CutLine, SelectLine, PasteLine,

CustomAction1, CustomAction2}

This property enumerates the possible actions to be assigned to a mouse button:

0) SDSTextEdit::NoAction: no action is assigned to the mouse button;

1) SDSTextEdit::CutLine: the whole line under the mouse pointer is

removed from the displayed text, the text below the cut line is shifted

upwards and a signal is emitted for passing a string containing the cut

text;

2) SDSTextEdit::SelectLine: the whole line under the mouse pointer

is selected, and a signal is emitted for passing a string containing the

selected text;

3) SDSTextEdit::PasteLine: a previously selected or cut line is inserted

at the mouse pointer position; if there is some text at that position, that

text is shifted downwards;

4) SDSTextEdit::CustomAction1: an user’s custom action;

5) SDSTextEdit::CustomAction2: a second user’s custom action;

Public members

action leftAct

This member stores the action assigned to the mouse left button.

action midAct

This member stores the action assigned to the mouse middle button.

37

Protected members

QString selection

This member stores the content of the last cut or selected line.

QTextCursor *tc

This member is a pointer to the text cursor of the displayed text.

Public slots

void SDSTextEdit::setActions(action la, action ma)

This slot assigns the actions to both the mouse left (first argument) and middle

(second argument) button, by setting the related values for members action leftAct and

action midAct.

Protected slots

void SDSTextEdit::cutLine(QMouseEvent *event)

This slot removes from text the line under the mouse pointer and stores it in member QString

selection. If the cut line is not the last one, all text below the cut line is shifted upwards.

Signal void SDSTextEdit::newSelection(QString) is emitted for passing the content of the

cut line.

void SDSTextEdit::mouseReleaseEvent(QMouseEvent *event), reimplemented from void

QMouseEvent::mouseReleaseEvent(QMouseEvent *event)

This slot determines which button has been clicked and calls the slot that performs the

associated action.

void SDSTextEdit::pasteLine(QMouseEvent *event)

This slot inserts at the mouse pointer position a previously selected or cut line. If some text

is already present at the pointer position, the whole text from that line to the end is shifted

downwards. The inserted text is the string stored in QString selection.

38

void SDSTextEdit::selectLine()

This slot selects the line under the mouse pointer position, stores its content in QString

selection and emits the signal void SDSTextEdit::newSelection(QString) for passing the

content of the selected line.

Virtual protected slots

virtual void SDSTextEdit::customAction1()

This slot has to be reimplemented in SDSTextEdit subclasses for performing a custom action

on the text. The enum SDSTextEdit::action to be assigned to the mouse button devoted for

triggering this action is SDSTextEdit::CustomAction1.

virtual void SDSTextEdit::customAction2()

This slot has to be reimplemented in SDSTextEdit subclasses for performing a second custom

action on the text. The enum SDSTextEdit::action to be assigned to the mouse button

devoted for triggering this action is SDSTextEdit::CustomAction2.

Signals

void SDSTextEdit::newSelection(QString)

This signal passes the content of a cut or selected line. In SDSTextEdit subclasses it can be

used for passing any string anyhow related to the clicked text.

4.4 SDSCatalogue class

4.4.1 Class overview

Class SDSCatalogue provides objects for managing the catalogue of sources. Its

core object is SDSTextEdit *catalogue, set so that a source can be selected by

left clicking on the related displayed line. Once a source is selected, signal void

SDSCatalogue::newSourceParameters(QString) is emitted for passing a string that contains

all informations required by the observation. In its displayed version, the catalogue is organized

39

by lines, each of them dedicated to a single source. Source informations can be programmatically

requested when the user manually inserts the source name in the GUI, or when setup files or

schedule lines are read. Slot virtual QString SDSCatalogue::findSourceCoords(QString

sourceName) has to be implemented in a SDSCatalogue subclass for extracting source

informations in such situations.

The informations required for the observation may depend on the coordinate system.

Member QString CoordSys is devoted to store this parameter, and its value can be set by the

overloaded slot void SDSCatalogue::setCoordSys, whose argument can be a QString whose

content is the coordinate system name (J2000 or Galactic), or an integer value (1 = J2000 or

2 = Galactic).

A second widget, QPlainTextEdit *parametersBar, is devoted for hosting the

description for the displayed source parameters. Its content is set by slot void

SDSCatalogue::setParametersNames(QString).

SDSCatalogue widgets are designed for being hosted in a dedicated window, that can

be resized so that catalogue line are entirely visible without any horizontal scrolling. What

remains fixed is the height of QPlainTextEdit *parametersBar, that is set by slot void

SDSCatalogue::setParametersBarHeight(int).

The text font and color palette have to be explicitly set. Slot void

SDSCatalogue::setStyle(QFont cf, QPalette cp) allows this setting.

4.4.2 Technical description

An SDSCatalogue object is a QWidget that hosts two child widgets: SDSTextEdit *catalogue,

devoted for displaying the source catalogue, and QPlainTextEdit *parametersBar, devoted

for hosting a description for the displayed source parameters.

The text displayed in member SDSTextEdit *catalogue has to be organized in rows, each

of them containing informations related to a single source, and stored in a text file. Slot void

SDSCatalogue::loadCatalogue(QString catFile), whose argument is the mentioned text

file including its full path, puts the content of such catalogue file in SDSTextEdit *catalogue.

The extraction of the source informations depends on the catalogue organization and

on the context in which they are requested. For this reason two virtual slots have been

declared. These slots have to be implemented in a SDSCatalogue subclass for extracting all

necessary informations and returning them in a single string, but differ in the content of their

arguments, accordingly to the different situations in which these informations are requested.

Slot virtual QString SDSCatalogue::findSourceCoords(QString sourceName) is meant

40

for being used when the source name is read in a setup file, in a schedule line or is manually

inserted by the user: its argument has to be the source name. Slot virtual QString

SDSCatalogue::getSourceParameters(QString catalogueLine) is called whenever a source

is selected by left clicking on the related line displayed in SDSTextEdit *catalogue. The source

parameters that are displayed in SDSTextEdit *catalogue, may not be the ones necessary for

the observation, but have been chosen so that it’s easier for the user the selection of the source

to be observed. This slot has hence to be implemented for extracting all necessary informations

starting by the source catalogue line, as displayed in SDSTextEdit *catalogue.

The signal/slot connection between signal void SDSTExtEdit::newSelection(QString),

emitted by SDSTextEdit *catalogue, and protected slot

void SDSCatalogue::newSourceSelected(QString) ensures that lines selected by a left click

are processed and signal void SDSTExtEdit::newSourceParameters(QString) is emitted for

passing to other objects a string containing the extracted informations.

SDSCatalogue objects are designed for being hosted in a dedicated window that can be

resized for an easy reading

of the catalogue lines. Slot void SDSCatalogue::resizeEvent(QResizeEvent *event),

reimplemented from virtual void QWidget::resizeEvent(QResizeEvent *event), resizes

SDSTextEdit *catalogue and QPlainTextEdit *parametersBar so that they fit in width in

the hosting window, and SDSTextEdit *catalogue fills the space between QPlainTextEdit

*parametersBar and the bottom of the window.

Inheritance

Inherits from: QWidget

Protected members

SDSTextEdit *catalogue

This member is the frame where the source catalogue is displayed. The text to

be displayed has to be stored in a text file that is loaded by calling slot void

SDSCatalogue::loadCatalogue(QString).

41

QString CoordSys

This member stores the coordinate system in which source coordinate have to be extracted from

the catalogue. It can be set by calling the overloaded slot void SDSCatalogue::setCoordSys.

QPlainTextEdit *parametersBar

This member is the frame where the parameters’ description is displayed. Its content is set by

calling slot void SDSCatalogue::setParametersNames(QString).

Public slots

void SDSCatalogue::loadCatalogue(QString ct)

This slot reads the text file that contains the source lines to be displayed in SDSTextEdit

*catalogue. The file has to be indicated with its absolute path.

void SDSCatalogue::setCoordSys(QString cs)

This slot sets the coordinate system through which the source coordinates have to be expressed.

Its allowed values are J2000 and Galactic.

void SDSCatalogue::setCoordSys(int csi)

This slot sets the coordinate system through which the source coordinates have to be expressed,

by using integer arguments. Its allowed values are 1 = J2000 and 2 = Galactic.

void SDSCatalogue::setParametersBarHeight(int py)

This slot sets the height for member QPlainTextEdit *parametersBar, vertically displaces

SDSTextEdit *catalogue just below QPlainTextEdit *parametersBar and adjusts its height

so that it fits in the hosting window.

void SDSCatalogue::setParametersNames(QString txt)

This slot displays in QPlainTextEdit *parametersBar the description for the source

parameters displayed in SDSTextEdit *catalogue.

void SDSCatalogue::setStyle(QFont cFont, QPalette cPal)

This slot sets the text font and the color palette for the SDSCatalogue widget and its child

42

objects.

Virtual public slots

virtual QString SDSCatalogue::findSourceCoords(QString sourceName)

This slot has to be reimplemented in SDSCatalogue subclasses for extracting the source

parameters by using as input the source name.

virtual QString SDSCatalogue::getSourceParameters(QString)

This slot has to be reimplemented in SDSCatalogue subclasses for extracting the source

parameters by using as input the source line displayed in SDSTextEdit *catalogue.

Protected slots

void SDSCatalogue::newSourceSelected(QString)

This slot extracts from the catalogue all source informations that are necessary for the

observation, and emits the signal void SDSCatalogue::newSourceParameters(QString) for

passing a string containing the extracted informations.

void SDSCatalogue::resizeEvent(QResizeEvent *event)

This slot readjusts the width for both QPlainTextEdit *parametersBar and SDSTextEdit

*catalogue so that they fit in width in the hosting window, and the height for the latter so

that it fits in height in the space between QPlainTextEdit *parametersBar and the bottom

of the window.

Signals

void SDSCatalogue::newSourceParameters(QString)

This signal passes the string that contains the value for those parameters that are required for

the observation.

43

Internal signal/slot connections

Signal void SDSTextEdit::newSelection(QString), emitted by member SDSTextEdit

*catalogue

to slot void SDSCatalogue::newSourceSelected(QString)

This connection triggers the extraction of the source parameters whenever a left click is done

on a source line displayed in SDSTextEdit *catalogue. The passed argument is the clicked

line.

4.5 SDSScheduleManager class

4.5.1 Class overview

Class SDSScheduleManager provides the object for managing the schedule file, which is

meant as a collection of observations that can be done in any order. Its core object is

SDSTextEdit *schedFrame, for which the mouse left button has been assigned the action

SDSTextEdit::SelectLine. A schedule line is selected by left clicking on it, and signal void

SDSTextEdit::obsLineSelected(QString) is emitted for passing the selection, typically to

an SDSObservationList object (see §4.6). If it’s necessary to select all schedule lines at once,

the button named Select all,member QPushButton SelectAll, has to be clicked.

A default directory for the schedules can be set by calling

slot void SDSScheduleManager::setScheduleDir(QString sd). A schedule line is loaded

by clicking the button labelled Load sched, member QPushButton LoadSchedule: a system

dialog window pops up for browsing the system directories and selecting the file, and the name

of the selected schedule is displayed in the field at the right of the Load sched button. A

schedule can also be loaded by typing its name in the mentioned field. If the selected schedule

is located in the default directory its name only has to be given, if it’s located in a subdirectory

it’s name has to be given with its relative path with respect to the default directory, and if it’s

located elsewhere its name has to be indicated with its absolute path. If no default directory

is set the schedule name must be always indicated with its absolute path.

A loaded schedule can be edited by the user. The Start edit labelled button, member

QPushButton StartEdit, sets SDSTextEdit *schedFrame as editable, while the End edit

labelled button, member QPushButton EndEdit, sets it as not editable. If button End edit is

44

clicked but there are unsaved changes, a system dialog window appears for saving schedule’s

changes. An edited schedule can be saved with its current name by clicking on button Save

(member SaveSched), or with a different name by clicking on button Save as... , member

SaveSchedAs: also in this case a system dialog window appears for saving the schedule in the

opportune directory and/or with the opportune name, and the new schedule name is displayed.

Changes since the last saving can be cleared by clicking on button Clear changes, member

ClearChanges.

Class SDSScheduleManager has been designed so that an object of this class can be hosted

in a dedicated window. Slot void SDSScheduleManager::setStyle(QFont smFont,QPalette

smPal) allows in this case to set the text font and the color palette.

4.5.2 Technical description

The core object of a SDSScheduleManager widget is SDSTextEdit *schedFrame: its actions are

set to SDSTextEdit::SelectLine and SDSTextEdit::NoAction for the left and middle mouse

button respectively. Its signal void SDSTextEdit newSelection(QString) is connected to

slot void SDSScheduleManager::sendObsLine(QString), which in turn emits the signal void

SDSScheduleManager::obsLineSelected(QString) only if SDSTextEdit *schedFrame is in

read only mode.

The selection of the entire schedule

is performed by slot void SDSScheduleManager::selectAll(), connected to the signal

void QPushButton::clicked() emitted by member QPushButton SelectAll: the whole

displayed text is selected and signal void SDSScheduleManager::obsLineSelected(QString)

is emitted with the mentioned selection as argument.

Member SDSEdit SchedField, placed without its label at the right side of QPushButton

LoadSchedule, allows the

user to manually insert the schedule name. Its signal void SDSEdit::newValue(QString)

is connected to the slot void SDSScheduleManager::readSchedule(QString), which

displays the content of the schedule file in SDSTextEdit *schedFrame. Signal void

QPushButton::clicked(), emitted by QPushButton LoadSchedule, is connected to slot void

SDSScheduleManager::loadSchedule(). This slot opens a dialog window for browsing the

system directories and selecting the schedule file: if a file is selected its name is displayed in

SDSEdit SchedField.

Slots that perform the actions related to the schedule editing are connected

to signal void QPushButton::clicked() emitted by the related QPushButton object.

45

Slot void SDSScheduleManager::startEdit(), called by clicking QPushButton StartEdit,

sets as editable the text displayed in SDSTextEdit *schedFrame. Slot void

SDSScheduleManager::saveSched(), called by clicking QPushButton SaveSched, builds the

absolute path of the file whose name is displayed in SDSEdit SchedField and writes

the displayed text in it, while slot void SDSScheduleManager::saveSchedAs(), called

by clicking QPushButton SaveSchedAs, pops up a system dialog window and saves the

displayed text in a file whose name and location are the selected ones. Slot void

SDSScheduleManager::clearChanges(), called by clicking QPushButton ClearChanges,

clears SDSTextEdit *schedFrame and loads the last saved version of the file whose name

is displayed in SDSEdit SchedField. Slot void SDSScheduleManager::endEdit(), called by

clicking QPushButton EndEdit, sets SDSTextEdit *schedFrame in read only mode. If there

are unsaved changes, this slot calls void SDSScheduleManager::saveSchedAs() for saving the

unsaved changes.

SDSScheduleManager objects are designed for being hosted in a separate window. Slot void

SDSScheduleManager::resizeEvent(QResizeEvent *event), reimplemented from virtual

void QWidget::resizeEvent(QResizeEvent *event), accordingly readjusts the positions

and dimensions of all child widgets, whenever the hosting window is resized.

Inheritance

Inherits from: QWidget.

Public Members

SDSEdit SchedField

This member acts as the filed for maunally inserting the schedule name and displaying it. Once a

file name is inserted, the file is automatically read and displayed in SDSTextEdit *schedFrame .

If no default directory has been set, the schedule name has to be inserted with its absolute path.

If instead a default directory has been set, the file name only has to be given if it’s located in

the default directory, it has to be indicated with its relative path with respect to the default

directory, if it is located in a subdirectory of the default one, and with its absolute path if

located elsewhere.

46

Protected Members

QPushButton ClearChanges

This button clears all schedule changes since the last saving by calling slot void

SDSScheduleManager::clearChanges().

QPushButton EndEdit

This button terminates the editing mode for SDSTextEdit *schedFrame by calling slot void

SDSScheduleManager::endEdit().

QPushButton LoadSchedule

This button opens a system dialog window, for selecting the schedule to be loaded, by calling

slot void SDSScheduleManager::loadSchedule().

QPushButton SaveSched

This button saves the displayed text in a file, whose name is displayed in SDSEdit SchedField,

by calling slot void SDSScheduleManager::saveSched().

QPushButton SaveSched

This button opens a system dialog window, for selecting the name and directory of the file into

the displayed text has to be saved, by calling slot void SDSScheduleManager::saveSchedAs().

SDSTextEdit *schedFrame

This member is the SDSTextEdit widget devoted to displaying the loaded schedule. Its mouse

button actions are set to SDSTextEdit::SelectLine and SDSTextEdit::NoAction for the left

and middle mouse button respectively.

QString scheduleDir

This member stores the full path of the default directory for the schedule files. It is set by slot

void SDSScheduleManager::setScheduleDir(QString sd).

QPushButton SelectAll

This button selects the entire displayed text for being transfered to the observation list by

calling slot void SDSScheduleManager::selectAll().

47

QPushButton StartEdit

This button enables the editing of the displayed schedule by calling slot void

SDSScheduleManager::startEdit().

Public slots

void SDSScheduleManager::setScheduleDir(QString sd)

This slot sets the default directory for the schedule files, by storing its value in member QString

scheduleDir.

void SDSScheduleManager::setStyle(QFont smFont,QPalette smPal)

This slot sets the text font and the color palette for the SDSScheduleManager object.

Protected slots

void SDSScheduleManager::clearChanges()

This slot clears the text displayed in SDSTextEdit *schedFrame and loads the content of the

file whose name is displayed in SDSEdit SchedField.

void SDSScheduleManager::endEdit()

This slot closes the editing mode. If there are unsaved changes, it calls void

SDSScheduleManager::saveSchedAs() for allowing the user to save the schedule displayed

version.

void SDSScheduleManager::loadSchedule()

This slot opens a system dialog window for selecting the schedule file to be loaded. If a file is

selected, its name is displayed in SDSEdit SchedField.

void SDSScheduleManager::readSchedule(QString schName)

This slot reads the file whose name is displayed in SDSEdit SchedField, after rebuilding its

absolute path accordingly to the rules for entering a schedule file name.

48

void SDSScheduleManager::resizeEvent(QResizeEvent *event)

This slot readjusts the dimensions and positions of all child widgets whenever the hosting

window is resized. QPushButton LoadSchedule and QPushButton SelectAll remain fixed in

their position and dimensions while SDSEdit SchedField, located at the right of QPushButton

LoadSchedule, is resized in width so that it horizontally fits from QPushButton LoadSchedule

to the window’s right side. QPushButton ClearChanges, QPushButton EndEdit, QPushButton

SaveSched, QPushButton SaveSchedAs and QPushButton StartEdit remain fixed in their

dimensions and horizontal positions, while they are vertically displaced so that they remain at

the bottom side of the window. SDSTextEdit *schedFrame is resized in width and height so

that it fits the space in between all other widgets.

void SDSScheduleManager::saveSched()

This slot saves the displayed text in a file whose name is displayed in SDSEdit SchedField,

after rebuilding its absolute path accordingly to the rules for entering a schedule file name.

void SDSScheduleManager::saveSchedAs()

This slot opens a system dialog window for selecting the directory and the name for the file in

which the displayed text has to be saved. The name of the new file is displayed in SDSEdit

SchedField accordingly to the rules for entering a schedule file name.

void SDSScheduleManager::selectAll()

This slot emits the signal void SDSScheduleManager::obsLineSelected(QString) by giving

it as argument the entire text displayed in SDSTextEdit *schedFrame.

void SDSScheduleManager::sendObsLine(QString ol)

This slot emits the signal void SDSScheduleManager::obsLineSelected(QString) by giving

it as argument the schedule line that has been left clicked.

void SDSScheduleManager::startEdit()

This slot sets as editable the text displayed in SDSTextEdit *schedFrame.

49

Signals

void SDSScheduleManager::obsLineSelected(QString)

This signal is emitted when a selection is made on the

displayed text. It is emitted by slots void SDSScheduleManager::selectAll() and void

SDSScheduleManager::sendObsLine(QString ol).

Established signal/slot connections

Signal void QPushButton::clicked(), emitted by member QPushButton ClearChanges

to slot void SDSScheduleManager::clearChanges()

This connection allows the call to slot void SDSScheduleManager::clearChanges() whenever

QPushButton ClearChanges is clicked.

Signal void QPushButton::clicked(), emitted by member QPushButton EndEdit

to slot void SDSScheduleManager::endEdit()

This connection allows the call to slot void SDSScheduleManager::endEdit() whenever

QPushButton EndEdit is clicked.

Signal void QPushButton::clicked(), emitted by member QPushButton LoadSchedule

to slot void SDSScheduleManager::loadSchedule()

This connection allows the call to slot void SDSScheduleManager::loadSchedule() whenever

QPushButton LoadSchedule is clicked.

Signal void QPushButton::clicked(), emitted by member QPushButton SaveSched

to slot void SDSScheduleManager::saveSched()

This connection allows the call to slot void SDSScheduleManager::saveSched() whenever

QPushButton SaveSched is clicked.

Signal void QPushButton::clicked(), emitted by member QPushButton SaveSchedAs

to slot void SDSScheduleManager::saveSchedAs()

This connection allows the call to slot void SDSScheduleManager::saveSchedAs() whenever

QPushButton SaveSchedAs is clicked.

50

Signal void QPushButton::clicked(), emitted by member QPushButton SelectAll

to slot void SDSScheduleManager::selectAll()

This connection allows the call to slot void SDSScheduleManager::selectAll() whenever

QPushButton SelectAll is clicked.

Signal void QPushButton::clicked(), emitted by member QPushButton StartEdit

to slot void SDSScheduleManager::startEdit()

This connection allows the call to slot void SDSScheduleManager::startEdit() whenever

QPushButton StartEdit is clicked.

Signal void SDSEdit::newValue(QString), emitted by member SDSEdit SchedField

to slot void SDSScheduleManager::readSchedule(QString)

This connection allows the call to slot void SDSScheduleManager::readSchedule(QString)

whenever a new text is entered in SDSEdit SchedField.

Signal void SDSTextEdit::newSelection(QString), emitted by member SDSTextEdit

*schedFrame

to slot void SDSScheduleManager::sendObsLine(QString)

This connection ensures that slot void SDSScheduleManager::sendObsLine(QString) is

called whenever a schedule line is selected by left clicking on it.

4.6 SDSObservationList class

4.6.1 Class overview

Class SDSObservationList provides the objects devoted for managing the observation list, i.e.

the list of the observations that have to be performed. Observation lines are loaded by selecting

them in the SDSScheduleManager window (see §4.5), and can be rearranged at any time before

and during the observing session. An observation line can be cut by clicking on it with the

mouse left button, and pasted by clicking at the desidered position with a mouse middle click.

The last cut line can be pasted multiple times. The button labelled Clear allows to clear all

displayed lines.

51

4.6.2 Technical description

A SDSObservationList is a composite QWidget. Its core is member SDSTextEdit *obsFrame,

devoted to displaying the observation lines, and whose mouse button actions are set to

SDSTextEdit::CutLine and SDSTextEdit::PasteLine respectively.

Two slots allow to add an observation line in SDSTextEdit *obsFrame. Slot void

SDSObservationList::addObsLine(QString ol) is devoted for appending a line at the

end of the displayed text, hence it’s meant for being called when a line is selected in

the SDSScheduleManager window. Slot void SDSObservationList::restoreLine(QString

obsLine) is devoted for inserting a line at the beginning of the displayed text, hence it’s meant

for being called if the observation is interrupted.

Slot QString SDSObservationList::getObsLine() extracts the first displayed line and

returns it, hence it’s meant to be called at the start of each planned observation for retrieving

all necessary informations.

Member

QPushButton clear, the Clear labelled button, calls slot void QPlainTextEdit::clear()

for clearing the text displayed in SDSTextEdit *obsFrame.

SDSObservationList widgets are designed for being hosted in a separate window.

Slot void SDSObservationList::setStyle(QFont olFont,QPalette olPal) allows to set at

once the widget’s text font and

the color palette. Slot void SDSObservationList::resizeEvent(QResizeEvent *event),

reimplemented from virtual void QWidget::resizeEvent(QResizeEvent *event), resizes

SDSTextEdit *obsFrame so that it always fits in the hosting window.

Inheritance

Inherits from: QWidget

Protected members

QPushButton clear

This button clears the text displayed in SDSTextEdit *obsFrame, by calling slot void

QPlainTextEdit::clear().

52

SDSTextEdit *obsFrame

This member is the SDSTextEdit object devoted to displaying the observations’ lines. Its

mouse actions are set to SDSTextEdit::CutLine and SDSTextEdit::PasteLine for the left

and middle button respectively.

Public slots

void SDSObservationList::addObsLine(QString ol)

This slot appends an observation line at the end of the displayed text.

QString SDSObservationList::getObsLine()

This slot extract the first line displayed in SDSTextEdit *obsFrame and returns it. The

extracted line is removed from SDSTextEdit *obsFrame.

void SDSObservationList::restoreLine(QString obsLine)

This slot inserts its argument string at the beginning of the text displayed in SDSTextEdit

*obsFrame.

void SDSObservationList::setStyle(QFont olFont,QPalette olPal)

This slot sets at once the text font and the color palette for the SDSObservationList object.

Protected slots

void SDSObservationList::resizeEvent(QResizeEvent *event), reimplemented from

virtual void QWidget::resizeEvent(QResizeEvent *event)

This slot resizes SDSTextEdit *obsFrame so that it always fits in the hosting window.

53

Established signal/slots connections

Signal void QPushButton::clicked(), emitted by member QPushButton clear

to slot void QPlainTextEdit::clear(), for member SDSTextEdit *obsFrame

This connection allows the clearing of the text displayed in SDSTextEdit *obsFrame when

QPushButton clear is clicked.

4.7 SDSLog class

4.7.1 Class overview

Class SDSLog provides objects for managing system messages, by both displaying them in a

dedicated frame and saving them in a file. All messages are reformatted as shown here below,

before being both displayed and saved in the log file.

DEV 14:34:52 This example shows how a long message is splitted in shorter

parts. Messages splitting makes them much more easily readable,

expecially if the substrings’ maximum length is tuned so that

they are shorter than the messages’ display frame width.

The first line contains the three characters code that identifies the device that generated

the message (see §5.2), followed by the UTC at which it has been received by the

SDSLog object. The device code has to be set in the SDSLog object by calling slot

void SDSLog::setDeviceID(QString cld). The message is automatically split in sections

whose maximum number of characters is set by slot void SDSLog::setMaxLineLength(int

mxl). A message is added to the log by the overloaded slot void SDSLog::addToLog. Its

base implementation is void SDSLog::addToLog(QString org, QString logEntry, QColor

tCol), whose arguments are the device code, the log message and the text color to

use in the SDSLog object. The default text color is Qt::black and the default device

code is the one set by slot void SDSLog::setDeviceID(QString cld). In the form void

SDSLog::addToLog(QString logEntry), the default value for both the text color and the

device code are used, while in the form void SDSLog::addToLog(QString logEntry,QColor

tCol) the default value for the device code only is used.

User annotations can be also put in the log file by typing them in the field at the bottom

of the SDSLog widget. The string User note is prepended to these annotation, and they are

displayed by using the default device code and using the QT::green color.

54

The signal void SDSLog::newLogEntry(QString,QString,QColor) passes all log

messages but the user annotations, so that they can be also displayed in other SDSLog objects

and saved in the related log file.

The log file is named as follows:

[device code]_YYYYMM.log

where [device code] is the three character code for the related device, as set by slot void

SDSLog::setDeviceID(QString cld), and YYYY and MM are the current year and month, in

four and two digit format respectively. The log file is opened in QIODevice::Append mode by

calling slot void SDSLog::openFileInDir(QString lDir), whose argument is the full path

to the directory the file has to be put.

Figure 4.1 displays the widget organization. At its top finds place a label for introducing

the object as a whole, in the middle the frame where log messages are displayed and at the

bottom an SDSEdit object for inserting the user’s annotations.

Figure 4.1: SDSLog widget example.

Slot void SDSLog::setGeometry(int px, int py, int wdt, int hgt, int mlw,

int txh) sets the SDSLog object position in the parent widget and its dimensions, and all

dimensions and positions for all child widget as follows:

a) px and py are the coordinates fir the SDSLog object’s top left corner in

the parent widget;

b) int wdt is the width for the SDSLog object;

c) int hgt is the height for the SDSLog object;

d) int mlw is the width for the SDSEdit object’s label;

e) int txh is the height for the upper label and the SDSEdit object;

55

f) All other dimensions and positions are derived from these parameters so

that all child widgets fit in the SDSLog object as displayed in figure 4.1.

Slot void SDSLog::setTitles(QString title, QString mtitle) sets the texts to be

displayed in the upper and lower label respectively. SDSLog objects are meant for being

child widgets, hence they hereditate the text font and color palette from their parent. If

they are placed in a dedicated window, these properties can be set by calling slot void

SDSLog::setStyle(QFont lf, QPalette lp). All graphic properties can be set at once by

calling slot void SDSLog::setAllGraphics(QWidget *parent, int px, int py, int wdt,

int hgt, int mlw, int txh, QPalette lPal,QFont lFont,QString title,

QString mtitle), a shortcut for calling void QWidget::setParent(QWidget *parent) and

all other mentioned slots for setting the graphic properties.

4.7.2 Technical description

A SDSLog object is a composite widget, whose child objects are QTextEdit messageDisplay,

the object that dislplays all messages, QLabel mainLabel, the label at the top of the widget

for hosting the object’s title, and SDSEdit manualEntry, devoted for entering the user’s

annotations. The graphic organization for the SDSLog object is shown in figure 4.1.

Member QString devID stores the device three character code, member QFile logFile

manages the file where all messages are saved, and member int maxlen stores the maximum

length, expressed in terms of the number of character, for each line displayed in QTextEdit

messageDisplay.

Protected slot void SDSLog::lineToLog() is devoted for inserting in the log history any

user annotation. It is called whenever the return key is pressed while SDSEdit manualEntry

has focus, thanks to its connection to signal void QLineEdit::returnPressed(), emitted

by member QLineEdit field of SDSEdit manualEntry. Slot void SDSLog::lineToLog()

checks if the string displayed in SDSEdit manualEntry is an empty string or not. A

sequence of blank characters only is considered empty. If such string is not empty, slot void

SDSLog::addToLog(QString logEntry,QColor tCol) is called by setting the text color to

Qt::green.

56

Inheritance

Inherits from: QWidget

Protected members

QString devID

This member stores the three characters string that identifies the device. It’s content is set by

slot void SDSLog::setDeviceID(QString cld).

QFile logFile

This object manages the ASCII file where all log messages are saved. Its name is by default:

[device code]_YYYYMM.log

where [device code] is the string stored in QString devID, and YYYY and MM are the year and

the month, in four and two digit format respectively. The directory where log files are created

and opened is set by slot void SDSLog::openFileInDir(QString cld).

QLabel mainLabel

This member is the label at the top of the SDSLog widget, and is devoted to host a title

for the log frame. The displayed text is set by slot void SDSLog::setTitles(QString

title, QString mtitle) to QString title. Its position is fixed, and its dimensions are set

by slot void SDSLog::setGeometry(int px, int py, int wdt, int hgt, int mlw, int

txh), while its QFrame Shape and QFrame Shadow properties have the default values of

QFrame::Panel and QFrame::Raised.

SDSEdit manualEntry

This member provides the object for adding users’ annotations to the log history. Once

the annotation is entered, it is displayed with a green color and saved in the log file by

pressing the return key. Only non blank strings can be added to the log; a sequence of

blank characters is considered empty. Its default position is at the bottom of the SDSLog

object, and its dimensions are set by slot void SDSLog::setGeometry(int px, int py, int

wdt, int hgt, int mlw, int txh), while the text displayed in its label is set by slot void

57

SDSLog::setTitles(QString title, QString mtitle)) to QString mtitle.

int maxlen

This member stores the maximum length, expressed in number of charactes, for each log

message. Its value is set by slot void SDSLog::setMaxLineLength(int mxl). If a message is

longer than this value, it’s split sections.

QTextEdit messageDisplay

This member is the frame where log messages are in real time displayed. By default

it is located in the SDSLog object between QLabel mainLabel and SDSEdit manualEntry.

Its dimensions are set by slot void SDSLog::setGeometry(int px, int py, int wdt, int

hgt, int mlw, int txh), while its text font and color palette are set by slot void

SDSLog::setStyle(QFont lf, QPalette lp).

Public slots

void SDSLog::addToLog(QString org, QString logEntry, QColor tCol)

This slot displays the string QString logEntry in QTextEdit messageDisplay, saves it in

file QFile logFile and emits the signal void SDSLog::newLogEntry(QString, QString,

QColor) for passing to other objects the newly added message. Its first argument is QString

org, i.e. the three character code of the device that originated the message, while the third

is the text color to use in QTextEdit messageDisplay. Their default values respectively are

the device code the SDSLog object is member and Qt::black. This slot also reformats the log

message accordingly to the value set in member int maxlen for the maximum length of lines.

The device code an the message UT are prepended to the message and if a string splitting is

necessary, all lines are indented as in this example:

DEV 14:34:52 This example shows how a long message is splitted in shorter

parts. Messages splitting makes them much more easily readable,

expecially if the substrings’ maximum length is tuned so that

they are shorter than the messages’ display frame width.

58

void SDSLog::addToLog(QString logEntry, QColor tCol)

This overloaded slot is a shortcut for calling void SDSLog::addToLog(QString org, QString

logEntry, QColor tCol) by using as device code the one of the device the SDSLog object is

member.

void SDSLog::addToLog(QString logEntry)

This overloaded slot is a shortcut for calling void SDSLog::addToLog(QString org, QString

logEntry, QColor tCol) by using as device code the one of the device the SDSLog object is

member, and the text color Qt::black.

void SDSLog::openFileInDir(QString lDir)

This slot opens QFile logFile in the directory lDir, indicated with its absolute path.

void SDSLog::setAllGraphics(QWidget *parent, int px, int py, int wdt, int hgt,

int mlw, int txh, QPalette lPal, QFont lFont, QString title, QString mtitle)

This slot is a shortcut for:

1) void QWidget::setParent(QWidget *parent)

2) void SDSLog::setGeometry(int px, int py, int wdt, int hgt, int mlw, int

txh)

3) void SDSLog::setStyle(QPalette lPal, QFont lFont)

4) void SDSLog::setTitles(QString title, QString mtitle)

void SDSLog::setDeviceID(QString cld)

This slot sets in member QString devID the device three character code. If its argument is

longer than three characters, only the first three are considered.

void SDSLog::setGeometry(int px, int py, int wdt, int hgt, int mlw, int txh)

This slot sets the position in the parent widget for the SDSLog object, and the positions

and dimensions for all its members. The upper left corner of the SDSLog object is placed

at coordinates int px and int py in the parent widget, int wdt is the common width for the

SDSLog object and members QLabel mainLabel and QTextEdit messageDisplay, int hgt is

the SDSLog object’s height, int mlw is the width for the label of SDSEdit manualEntry, and

int txh is the common height for QLabel mainLabel and SDSEdit manualEntry. The top

left corner of QLabel mainLabel is placed at coordinates x=0, y=0 in the SDSLog widget, the

59

top left corner of SDSEdit manualEntry is placed at x=0, y=hgt-txh and the top left corner

of QTextEdit messageDisplay is placed at x=0, y=txh. All other dimensions are determined

so that all objects fit in the SDSLog widget as indicated in figure 4.1.

void SDSLog::setMaxLineLength(int mxl)

This slot sets the value stored in member maxlen, i.e. the maximum length in characters for

the messages’ lines.

void SDSLog::setStyle(QFont lf, QPalette lp)

This slot sets, for the SDSLog widget and its child members, the text font to QFont lf and the

color palette to QPalette lp

void SDSLog::setTitles(QString title, QString mtitle)

This slot sets the texts displayed in QLabel mainLabel and in QLabel SDSEdit::vLabel

respectively to QString title and QString mtitle.

Protected slots

void SDSLog::lineToLog()

This slot inserts an user’s annotation in the log history, by both displaying it in QTextEdit

messageDisplay and saving it in QFile logFile.

Signals

void SDSLog::newLogEntry(QString,QString,QColor)

This signal passes the log message, unless it is an user annotation, jointly with the code for the

device that originated the message and the used text color.

60

Established signal/slot connections

Signal void QLineEdit::returnPressed(), emitted by member QLineEdit field of SDSEdit

manualEntry

to slot void SDSLog::lineToLog()

This connection ensures that the annotation typed in SDSEdit manualEntry is saved in the

log history when the user presses the return key.

61

Chapter 5

Device classes

5.1 Introduction

The concept of device changed several times during the design of the classes illustrated in this

chapter. The starting point has been the request of an application capable of managing the

parallel data acquisition by several backends. This request lead to the design of a base class,

to be later reimplemented in subclasses for obtaining objects capable of managing specific

backends. In order to design the base class, it has been necessary to figure out how a generic

backend can be considered. It resulted that it can be seen as composed of two parts, namely:

1) the instrument: it’s the backend’s working core, whose role is to process

the incoming signal by sampling and digitalizing it, and to perform the

online data processing, if required;

2) the control server: it’s a computer devoted for running the backend’s

control software, i.e. the software that effectively configures the

instrument, starts, stops and checks the progress and status of the data

acquisition, and takes the opportune decisions in case of problems; in any

backend the control software can also accept network connections from

a remote computer that runs the application that manages the whole

observation;

An antenna is a device that is totally different from a backend, since it’s totally different

its main task, i.e. the task that the antenna continuously performs during the observation,

namely the tracking of the observed source. What is also true is that the antenna is controlled by

a dedicated server that runs the antenna’s control software, whose description exactly matches

62

the one above for the backend’s control software if one reads antenna instead of backend and

source tracking instead of data acquisition.

This simple consideration lead to the following definition, namely a device is a generic part

of a telescope that in turn can be considered composed of two parts:

1) the instrument: it’s the device working core, whose role is to

continuously perform during the observation the device main task;

2) the control server: it’s a computer devoted for running the device

control software, i.e. the software that effectively configures the device,

starts, stops and checks the progress and status of the main task, and

takes the opportune decisions in case of problems; in any device the

control software can also accept network connections from a remote

computer that runs the application that manages the whole observation;

The mentioned device concept lead to design the SDSDevice class, i.e. the base class for

managing a device, whose subclasses are SDSBackend and SDSAntenna, the base classes for

building objects devoted to control the backends and the antenna respectively.

A device procedure may require a sequence of commands somehow displaced in time. If

the function responsible for sending these commands is run in the application’s main thread,

the application itself freezes until the requested procedure ends. This issue can be solved

if sequences of commands to a device are managed by a parallel thread. For this reason

class SDSCommThread has been designed for providing threads that manage the communications

between a device and its managing object in the user’s application.

Once these base classes have been implemented, what remained to do was to design and

implement the class that provides the object for managing an observation or an observing

session. It has been soon realized that this class could be a subclass of SDSDevice. Infact, if

one considers a device whose instrument is the whole telescope, it turns out that the telescope’s

main task is the observation, and that the telescope is configured and driven by a control

server that runs a control software, which in turn is nothing but the application the observer uses

for managing its observing session. This lead to the implementation of class SDSManager as a

SDSDevice subclass that immediately resulted fully implemented, since all telescope−dependent

tasks and commands are implemented in SDSBackend and SDSAntenna subclasses.

63

5.2 SDSDevice class

5.2.1 Class overview

SDSDevice is the base class for building objects devoted to control a generic device. A set

of functionalities has already been implemented which can be recognised as common to any

device, without knowing a priori their kind. These basic functionalities are:

1) the device control has to be enabled/disabled in the observer application

accordingly to the observations’ requirements;

2) any device has to be set up before the observation, i.e. a set of scientific

and technical parameters have to be set;

3) the device main task has to be started at the beginning of the observation

and stopped at its end;

4) device messages may arrive at any time, and they have to be processed

in such a way that simultaneous messages from different device can be

simultaneously collected and processed;

5) device messages must be in real time displayed and stored in a file;

6) the device status has to be stored and displayed in its controlling object;

7) it may be necessary to send manual commands;

8) a secondary window may be useful for displaying those informations that

do not need to be displayed in the SDSDevice main widget;

Every functionality can be activated both manually by the user and programmatically

during the observation. The only exceptions are clearly given by the reception and processing

of messages from the device, and by the displaying of the device status.

The control of a device can be manually enabled and disabled by clicking SDSStatusButton

deviceAct, also devoted to displaying the enabling status, or programmatically by calling

slot virtual void SDSDevice::enableDevice(bool), whose boolean argument is true if it’s

requested the enabling, or false in case of disabling. The enabling status is also stored by

means of a boolean value in member bool isEnabled, whose values mean true = enabled

and false = disabled.

64

Parameters values for the device setup can be manually entered by acting in the related

SDSValue objects, but can be also read in a file: the setup file. SDSEdit SetupFile provides

a field to manually enter the name of the setup file. A directory can be set as the default location

for the setup files, by calling slot void SDSDevice::setSetupDir(QString sd). If no default

directory is set, the name of the setup file has to be indicated with its full path. If instead a

default directory is set, the name of the setup file can be given accordingly to its position with

respect to the default directory, namely:

1) the requested file is in the default directory: its name only can be

specified;

2) the requested file is in a subdirectory of the default one: its name has to

be given with its relative path with respect to the default directory;

3) the requested file is elsewhere: its name has to be given with its absolute

path.

Once the name of a setup file is inserted in SDSEdit SetupFile, it’s automatically loaded.

QPushButton LoadSetup opens a system dialog window for browsing the system directories

and selecting a setup file. When a file is selected in this way, its name is displayed in SDSEdit

SetupFile by using the same conventions indicated above. If necessary, the already loaded file

can be reloaded by clicking QPushButton ReloadSetup.

The device main task can be manually started and stopped by clicking QPushButton

Start and QPushButton Stop, or programmatically by calling slots virtual void

SDSDevice::start() and virtual void SDSDevice::stop().

All communications with the device control server are performed by member

SDSCommThread *commThread, i.e. the communication thread (§5.3). Any command, or any

sequence of commands separated by a semicolon “;”, have to be only composed in the main

thread, then they have to be passed to the communication thread so that the application does

not freeze while sending to the device several commands and waiting for the device response.

All given commands are saved in the device log file. All incoming messages are collected by

the communication thread before being passed to the main thread for being analyzed, and this

ensures that simultaneous messages from different devices can be immediately collected.

The secondary window QWidget auxiliaryWindow is devoted to displaying those

informations that do not need to be immediately available, hence can be opened when necessary

by clicking QPushButton auxiliaryWindowShow and closed at any time.

65

Log messages are managed by SDSLog deviceLog (see § 4.7), while the device status is

displayed by SDSEdit Status.

Manual commands can be typed in SDSEdit ManualCommand, and sent by pressing the

return key.

Devices have to be identified by a three characters code, stored by QString deviceID and

set by slot void SDSDevice::setDeviceID(QString dID).

Finally, the label QLabel MainLabel can be used for displaying the device name. Its

default QFrame::Shape and QFrame::Shadow are QFrame::Panel and QFrame::Raised.

The color palette and the text font for the SDSDevice widget and its child objects are set

by slot void SDSDevice::setStyle(QFont,QPalette).

A default organization for SDSDevice widgets cannot be set at this stage, since it strongly

depends on the device type and on the number and class of all necessary device− type related

members.

5.2.2 Technical description

Class SDSDevice object has been designed by implementing the management of those

functionalities that are present in any device. Such implementation has been done by identifying

for each functionality what is effectively device independent and what is instead device

dependent.

The device enabling and disabling is

performed by slot virtual void SDSDevice::enableDevice(bool), declared virtual since the

tasks to be effectively performed are device dependent. It has to be implemented in SDSDevice

subclasses to perform both tasks accordingly to the boolean value of its argument, namely if it’s

equal to true the enabling task has to be done, if it’s equal to false the disabling one. This

solution allows to connect this slot to the signal void SDSStatusButton::activate(bool)

from SDSStatusButton deviceAct, also responsible for displaying the enabling status, so that

both the device enabling and disabling can be manually invoked by clicking on the mentioned

button. The enabling status is also stored in member bool isEnabled, whose values mean

true = enabled and false = disable. As already explained in §4.2, the device enabling

and disabling may require tasks that may not be successful. For this reason the requested

enabling status is not set, in SDSStatusButton deviceAct and bool isEnabled, as virtual

void SDSDevice::enableDevice(bool) is called. This setting will have to be implemented

in the SDSDevice subclasses, in particular in those slots devoted to control if the enabling and

disabling tasks are successfully performed.

66

Member SDSEdit SetupFile provides the field to type and display the name of the

configuration file. The connection between its signal void SDSValue::newValue(QString)

and slot void SDSDevice::readSetupFile(QString) ensures that

the file is immediately read as its name is the new value for SDSEdit SetupFile. Slot void

SDSDevice::readSetupFile(QString) opens the file whose name is its argument and reads

it line by line. Once a line is read, slot virtual void SDSDevice::readSetupLine(QString)

is called for analyzing each line. It’s declared here as virtual since the parameters keywords

and their argument syntax clearly depend on the device. This slot has to be implemented

for reading those lines that set a parameter that is common to any device of the same kind

(e.g. the sampling time for a backend), while those lines that set a parameter that is peculiar

of a given device can be read by slot virtual void SDSDevice::readCustomLine(QString).

Slot void SDSDevice::loadSetup() is called when QPushButton LoadSetup is clicked: it

opens a system dialog window for browsing the system directories and selecting the file

to be loaded. Once a file is selected, its name is set as the new value for SDSEdit

SetupFile and displayed accordingly to the conventions about the default directory mentioned

before. The default directory is set by slot void SDSDevice::setSetupDir(QString)

and stored in member QString setupDir. The file whose name is already displayed in

SDSEdit SetupFile can be reloaded by clicking QPushButton ReloadSetup, whose signal void

QPushButton::clicked() is connected to slot void SDSDevice::reloadSetupFile(), which

in turn calls void SDSDevice::readSetupFile(QString) by setting as its argument the string

displayed in SDSEdit SetupFile.

Two virtual slots are devoted to starting and stopping the device main task,

namely virtual void SDSDevice::start() and virtual void SDSDevice::stop(), with

the obvious meaning of their names. They can be manually called by clicking

QPushButton Start and QPushButton Stop, thanks to their connection to the signal void

QPushButton::clicked() emitted by these buttons. Their implementation is obviously

deferred to fully implemented SDSDevice subclasses devoted for managing specific devices.

The device status is displayed by member SDSEdit Status, which has been set as not

editable for obvious reasons.

The communication between the SDSDevice object and the managed device are managed

by member SDSCommThread *commThread (see §5.3). A single command or a sequence of

commands, separated by the semicolon ";" character, are sent to the communication thread

by slot void SDSDevice::sendCommand(QString), whose argument is the string containing

the command(s) to be sent. Slot virtual void SDSDevice::readMessage(QString) is

67

devoted to analyze any incoming message and taking the opportune decisions. Two

other slots, virtual void socketError(QAbstractSocket::SocketError) and virtual

void socketState(QAbstractSocket::SocketState), are devoted to take decision when an

error occurs in the socket connection or the connection state changes. A set of signal/slot

connections ensure that the mentioned slots are called when necessary, but these connections

cannot be instantiated in the SDSDevice constructor, since SDSCommThread *commThread has

to be recasted to a fully implemented SDSCommThread subclass in the SDSDevice subclass

devoted to managing a given device. Slot void SDSDevice::createConnections() has to be

called in the fully implemented SDSDevice subclass for establishing these connections.

The possibility of sending manual commands to a device is managed by member SDSEdit

ManualCommand. The connection between signal void QLineEdit::returnPressed(), from

member QLineEdit field of SDSEdit ManualCommand, and

slot void SDSDevice::sendManualCommand() ensures that the typed command is sent only

if the return key is pressed.

Member SDSLog deviceLog manages all log messages (§4.7). The directory for the device

log files is set by slot void SDSDevice::setLogDir(QString ld), while the three characters

code that identifies the device is set by void SDSDevice::setDeviceID(QString id).

Member QWidget auxiliaryWindow is the auxiliary window. It is opened by clicking

on QPushButton auxiliaryWindowShow, thanks to the connection between signal void

QPushButton::clicked() and slot void QWidget::show().

Member QLabel MainLabel is the only already declared graphic object. Apart of this, no

default graphic organization is set. Slot void SDSDevice::setStyle(QFont,QPalette) sets

the color palette and the text font for the main widget and QWidget auxiliaryWindow, while

slot virtual void SDSDevice::setChildrenStyle(QFont,QPalette) has to be implemented

in SDSDevice subclasses for setting these properties in other possible child widgets that are

hosted in dedicated windows.

Inheritance

Inherits from: QWidget

Inherited by: SDSAntenna, SDSBackend, SDSManager

68

Public members

QWidget auxiliaryWindow

This member is a widget, to be hosted in a dedicated window, devoted to display those

parameters whose presence is not strictly necessary in the SDSDevice main widget. The window

hosting this widget can be opened by clicking QPushButton auxiliaryWindowShow.

QPushButton auxiliaryWindowShow

This button opens the window that hosts QWidget auxiliaryWindow.

SDSCommThread *commThread

This member is a pointer to the SDSCommThread object devoted to manage the socket connection

to the device server and all communication to and from it.

All signal/slot connections have to be established by calling slot

void SDSDevice::createConnections().

SDSStatusButton deviceAct

This button enables/disables the device, by calling slot virtual void

SDSDevice::enableDevice(bool), and displays the device enabling status.

QString deviceID

This member stores the three characters device code. It’s set by slot void

SDSDevice::setDeviceID(QString)

SDSLog deviceLog

This member manages the device log messages. The directory for the log files is set by slot

void SDSDevice::setLogDir(QString).

bool isEnabled

This member stores the device enabling status by means of a boolean variable: isEnabled =

true means that the device is enabled, isEnabled = false means that the device is disabled.

QPushButton LoadSetup

This button calls slot void SDSDevice::loadSetup() for opening a system dialog window that

69

allows the system directories browsing and the setup file selection.

QLabel MainLabel

This object is the main label in the SDSDevice widget, devoted to display the name of the

managed device or the description of the role given to the SDSDevice object in the observer’s

application.

SDSEdit ManualCommand

This member provides the field for manually entering a command to be given to the device.

QPushButton ReloadSetup

This button calls slot void SDSDevice::reloadSetupFile() for reloading the setup file whose

name is displayed in SDSEdit SetupFile.

SDSEdit SetupFile

This member is devoted to manually entering and anyway displaying the name of the selected

setup file. Once a file name is entered, the file is automatically loaded. The setup file name has

to be specified with its full path if no default location for the setup files has been set. If instead

the default location has been set, by calling void SDSDevice::setSetupDir(QString), the

name of the file has to be entered as follows:

1) the requested file is in the default directory: its name only can be

specified;

2) the requested file is in a subdirectory of the default one: its name has to

be given with its relative path with respect to the default directory;

3) the requested file is elsewhere: its name has to be given with its absolute

path.

QPushButton Start

This button allows to manually start the device main task. When it’s clicked it calls slot

virtual void SDSDevice::start().

70

SDSEdit Status

This member is a not editable SDSEdit object devoted to displaying the device status.

QPushButton Stop

This button allows to manually stop the device main task. When it’s clicked it calls slot

virtual void SDSDevice::stop().

Protected members

QString setupDir

This member stores the default directory for the setup files. Its value is set by slot void

SDSDevice::setSetupDir(QString).

Public slots

void SDSDevice::createConnections()

This slot establishes all signal/slot connections between the SDSDevice object and its member

SDSCommThread *commThread. As explained in §5.3, this slot has to be called in the constructor

of the fully implemented SDSDevice subclass, after recasting SDSCommThread *commThread to

the fully implemented SDSCommThread subclass.

void SDSDevice::loadSetup()

This slot opens a system dialog window for browsing the system directories and selecting the

setup file. Once a file is selected, its name is displayed in SDSEdit SetupFile and automatically

loaded.

void SDSDevice::readSetupFile(QString sFile)

This slot opens the selected setup file sFile, extracts each line and calls slot virtual void

SDSDevice::readSetupLine(QString sLine) for reading the extracted lines.

void SDSDevice::reloadSetupFile()

This slot reloads the setup file, whose name is already displayed in SDSEdit SetupFile.

71

void SDSDevice::sendCommand(QString cmd)

This slot transfers to SDSCommThread *commThread the string cmd containing the command(s)

to be sent to the device. If multiple commands have to be sent, they have to be separated by

the semicolon ";" character. Any string passed as command to SDSCommThread *commThread

is saved in the device log file.

void SDSDevice::sendManualCommand()

This slot is responsible for sending to the device a command that’s manually entered by the

user in member SDSEdit ManualCommand.

void SDSDevice::setDeviceID(QString dID)

This slot sets to dID the three character code for the device. If the given argument is longer,

it’s truncated to its first three characters.

void SDSDevice::setLogDir(QString lDir)

This slot sets to lDir the directory for hosting the device log files. The directory has to be

specified with its full path.

void SDSDevice::setSetupDir(QString sDir)

This slot sets to sDir the default directory for the device setup files. The directory has to be

specified with its full path.

void SDSDevice::setStyle(QFont dFont, QPalette dPal)

This slot sets to dPal the color palette and to dFont the text font for the SDSDevice

widget, for QWidget auxiliaryWindow, and for other possible child widgets that are

hosted in separate windows by calling, for these latter ones, slot virtual void

SDSDevice::setChildrenStyle(QFont dFont, QPalette dPal).

Virtual public slots

virtual void SDSDevice::enableDevice(bool bl)

This slot has to be implemented in fully implemented SDSDevice subclasses for both enabling

and disabling the device control. The enabling algorithm has to be called when the argument

72

has the boolean value true, while the disabling one when the argument has the boolean value

false.

virtual void SDSDevice::readCustomLine(QString sLine)

This slot has to be implemented in a fully implemented subclass of a SDSDevice subclass

devoted to provide the base class for devices of a well identified type (e.g. the base

class for backends). It’s meant to be called in the implementation of slot virtual void

SDSDevice::readSetupLine(QString sLine) for extracting, from a line in a setup file, the

value of a parameter which is specific of a specific device.

virtual void SDSDevice::setChildrenStyle(QFont dFont, QPalette dPal)

This slot has to be implemented in fully implemented SDSDevice subclasses for setting to dPal

the color palette and to dFont the text font for further possible child widgets hosted in dedicated

windows.

virtual void SDSDevice::start()

This slot has to be implemented in fully implemented SDSDevice subclasses for starting the

device main task.

virtual void SDSDevice::stop()

This slot has to be implemented in fully implemented SDSDevice subclasses for stop the device

main task.

Virtual protected slots

virtual void SDSDevice::readMessage(QString msg)

This slot has to be implemented in fully implemented SDSDevice subclasses for analyzing the

device message msg and taking the opportune decisions.

virtual void SDSDevice::socketError(QAbstractSocket::SocketError se)

This slot has to be implemented in fully implemented SDSDevice subclasses for taking the

opportune decisions whenever the error QAbstractSocket::SocketError se occurs in the

socket connection to the device server, and accordingly to the error type.

73

virtual void socketState(QAbstractSocket::SocketState st) This slot has to be

implemented in fully implemented SDSDevice subclasses for taking the opportune

decisions whenever the state of the connection to the device server changes to

QAbstractSocket::SocketState st, and accordingly to the new connection state.

Established signal/slot connection

Signal void SDSStatusButton::activate(bool), emitted by member SDSStatusButton

deviceAct

to slot virtual void SDSdevice::enableDevice(bool)

This connection allows to manually switch the enabling status by clicking SDSStatusButton

deviceAct.

Signal void QPushButton::clicked(), emitted by member QPushButton Start

to slot virtual void SDSdevice::start()

This connection allows to manually start the device main task by clicking QPushButton Start.

Signal void QPushButton::clicked(), emitted by member QPushButton Stop

to slot virtual void SDSdevice::stop()

This connection allows to manually stop the device main task by clicking QPushButton Stop.

Signal void QPushButton::clicked(), emitted by member QPushButton LoadSetup

to slot void SDSdevice::loadSetup()

This connection allows the call for the slot that opens the system dialog window for selecting

the setup file to be loaded, when QPushButton LoadSetup is clicked.

Signal void QPushButton::clicked(), emitted by member QPushButton reloadSetup

to slot void SDSdevice::reloadSetupFile()

This connection allows the call for the slot that reloads the setup file whose name is already

displayed in member SDSEdit SetupFile, when QPushButton reloadSetup is clicked.

74

Signal void QPushButton::clicked(), emitted by member QPushButton

auxiliaryWindowShow

to slot void QWidget::show() for member QWidget auxiliaryWindow

This connection allows the opening of the window that hosts QWidget auxiliaryWindow when

QPushButton auxiliaryWindowShow is clicked.

Signal void SDSValue::newValue(QString), emitted by member SDSEdit SetupFile

to slot void SDSDevice::readSetupFile(QString)

This connection ensures that the setup file is automatically loaded when its name is set for

member SDSEdit SetupFile.

Signal void QLineEdit::returnPressed(), emitted by member QLineEdit field of SDSEdit

ManualCommand

to slot void SDSDevice::sendManualCommand()

This connection ensures that a manually given command is sent to the device only when the

return key is pressed, after the command has been typed in SDSEdit ManualCommand.

Signal/slot connection to be established in fully implemented subclasses

Signal void SDSCommThread::newCommandGiven(QString) from member SDSCommThread

*commThread

to slot void SDSLog::addToLog(QString) for member SDSLog deviceLog

established by calling slot void SDSDevice::createConnections()

This connection has to be established for displaying and storing in the log file all given

commands as they are effectively sent to the device.

Signal void SDSCommThread::newMessage(QString) from member SDSCommThread

*commThread

to slot virtual void SDSDevice::readMessage(QString)

established by calling slot void SDSDevice::createConnections()

This connection has to be established for passing to the SDSDevice object all device messages,

so that they can be displayed, stored in the log file and the opportune decisions can be taken.

75

Signal void SDSCommThread::socketError(QAbstractSocket::SocketError) from member

SDSCommThread *commThread

to slot virtual void SDSDevice::socketError(QAbstractSocket::SocketError)

established by calling slot void SDSDevice::createConnections()

This connection ensures that the notification of an error occurred in the socket connection

reaches the SDSDevice object, so that the opportune decisions can be taken.

Signal void SDSCommThread::socketState(QAbstractSocket::SocketState) from member

SDSCommThread *commThread

to slot virtual void SDSDevice::socketState(QAbstractSocket::SocketState)

established by calling slot void SDSDevice::createConnections()

This connection ensures that the notification of a status change in the socket connection reaches

the SDSDevice object, so that the opportune decisions can be taken.

5.3 SDSCommThread class

5.3.1 Class overview

SDSCommThread is the base class for building the parallel thread devoted to directly manage

the socket connection and all communications with the device’ server. Inherited by QThread,

this class has been designed for providing objects that are member of a SDSDevice object.

The socket connection parameters are set by slot void

SDSCommThread::setHostParameters(QString ip,int pt), whose arguments are the string

containing the IP address of the device server and the communication port through which

the connection has to be established. Slots void SDSCommThread::connectToHost() and

void SDSCommThread::disconnectFromHost() perform all necessary tasks for respectively

establishing and terminating the connection to the device server.

A command, or a sequence of commands separated by semicolons, for the

device are set by slot void SDSCommThread::newCommandQueue(QString). Slot void

SDSCommThread::setCommandInterval(int cmi) allows to set the minimum time interval

between two consecutive commands: its argument is the value of this time lag, expressed

in milliseconds. By default it’s set to 1000 ms.

Some devices may require to be periodically queried for obtaining their current status,

since their control software do not automatically send this information to the connected client.

76

Such a query command is set by slot void SDSCommThread::setPeriodicCommand(QString

cmd). This query command is sent at time intervals equal to the time lag set by slot

setCommandInterval(int cmi), unless a specific command has to be given to the device.

5.3.2 Technical description

Class SDSCommThread is a partially implemented class whose objects manage the socket

connection and all communications to and from the device server. Its algorithms have been

designed so that what can be considered independent to the device is performed by fully

implemented slots, while all tasks that depend on the device itself have to be implemented

in a dedicated SDSCommThread subclass by opportunely programming the virtual function of

this class.

A SDSCommThread object is a QThread object, whose main members are QTimer timer,

which ensures that two consecutive commands are sent at a minimum time distance equal to its

timeout interval, and QTcpSocket *socket, which is the socket through which the connection

is established to the device server.

Private slot virtual void QThread::run() is reimplemented in this class for

starting QTimer timer with a timeout interval equal to the value set by slot void

SDSCommThread::setCommandInterval(int cmi) and stored in member int cmdPeriod.

The signal void QTimer::timeout() from QTimer timer is connected to slot void

SDSCommThread::timerHit(), which is responsible for checking if there is a command to be

sent to the device. Its implementation is a bit involved and it is illustrated in figure 5.1.

The command to be sent to the device can be either the periodic command stored

in member QString periodicCommand, or a specific command if the content of member

QString newCommand is different from the string none. A command for which it is

necessary to wait for it’s completion by the device has to be stored in member QString

awaitingCommand, whose content has to be set by the reimplementation of slot virtual void

SDSCommThread::setAwaitingCommand() in the fully implemented SDSCommThread subclass.

Whenever it is received the string containing either a single command, or a sequence of

semicolon separated commands, this string is stored in member QString commandQueue. This

string is read by slot void SDSCommThread::nextCommandInQueue(), which extracts the first

command to be sent and stores it in QString newCommand.

Slot void SDSCommThread::writeToSocket(QString cmd) is responsible for effectively

sending the command to the device. If the command to be sent is not the periodic command,

signal void SDSCommThread::newCommandGiven(QString) is emitted for passing to other

77

Send the periodic
command

Start Is socket
connected?

Exit

NO

YES

Is there a
specific command

to be sent?

NO Is there a
periodic

command?

NO

YES

YES

Send specific
command

Set specific command
as awaiting

Figure 5.1: Flux diagram for slot timerHit().

object the string containing the command to be sent. Before being written to the socket it

may be necessary to reformat the command, accordingly to the syntax required by the device

control software for commands received from an external client. A real example may better

clarify this point. Let’s consider the PDFB backend, available at, e.g., the Parkes radio telescope1.

One of the commands the user can give to this device is:

config pdfb3_256_512_256

This is how the command has to be composed when directly given through the PDFB console.

If this command has to be given by a client through a socket connection, it has to be formatted

as follows:

COMMAND0024 config pdfb3_256_512_256

Slot virtual QString SDSCommThread::composeCommand(QString cmd) has to be

implemented in

fully implemented SDSCommThread subclasses for performing this kind of reformatting. Its

argument, i.e. the argument for void SDSCommThread::writeToSocket(QString cmd), is the

1http://www.parkes.atnf.csiro.au/

78

command to be given, exactly composed as if it were manually typed in the console running on

the device server. The returned string is the input string, reformatted for being accepted by

the device when received through a socket connection. Slot composeCommand(QString cmd)

does not need to be reimplemented, if a device does not need such a commands reformatting.

Incoming messages are collected from the socket

connection by slot void SDSCommThread::readSocket(). This slot emits the signal void

SDSCommThread::newMessage(QString) for passing to other objects the string containing the

received signal, and calls slot virtual void SDSCommThread::processMessage(QString),

which has to be implemented in fully implemented SDSCommThread subclasses for analyzing the

received message and take the opportune decisions. The variety of messages and the decisions

to be taken depend on the device control software. Among all possible messages and decisions,

it’s worth of mentioning messages indicating that the given command has been successfully

accomplished and the related decision is to proceed with the next command in the command

queue.

Member QTcpSocket *socket is a pointer to a QTcpSocket object, devoted for

establishing the connection to the device server and communicate with it. Its connection

parameters, namely the server’s IP address and the communication port, are set by slot

void SDSCommThread::setHostParameters(QString ip,int pt) and respectively stored in

members QString hostIP and int hostPort. A signal/slot connection between signal

void QAbstractSocket::stateChanged(QAbstractSocket::SocketState st), emitted by

QTcpSocket *socket,

and slot void SDSCommThread::state(QAbstractSocket::SocketState st) ensures that a

reaction occurs whenever the state of QTcpSocket *socket changes, and the signal void

SDSCommThread::socketState(QAbstractSocket::SocketState st) is emitted for passing

to other objects the information about the new state. Two reactions have been implemented

by default. If the new socket state is QAbstractSocket::ConnectedState, the SDSCommThread

thread is started; if instead the new sockets state is QAbstractSocket::UnconnectedState the

SDSCommThread thread is terminated. Further reactions can be disposed by reimplementing slot

virtual void SDSCommThread::socketStateChanged(QAbstractSocket::SocketState

st), which is always called by void

SDSCommThread::state(QAbstractSocket::SocketState st). Similarly, the signal/slot

connection between signal void QAbstractSocket::error(QAbstractSocket::SocketError

se) and slot void SDSCommThread::error(QAbstractSocket::SocketError se), ensures

that a reaction occurs whenever an error occurs in the socket connection, and

79

the signal void SDSCommThread::socketError(QAbstractSocket::SocketError st) is

emitted for passing to other objects the information about the occurred error.

No default reaction has been implemented at this level, hence slot virtual void

SDSCommThread::socketErrorOccurred(QAbstractSocket::SocketError), which is always

called by void SDSCommThread::socketError(QAbstractSocket::SocketError st), has to

be reimplemented if necessary.

Inheritance

Inherits from: QThread

Protected members

QString awaitingCommand

This member is a QString object for storing the last sent command while waiting for a response

from the device about its result. It is set to none if no command has been sent or if the sent

command does not require a response.

int cmdPeriod

This member stores the

time interval in milliseconds between two consecutive commands. Its default value is 1000

ms, and can be set by slot void SDSCommThread::setCommandInterval(int cmi).

QString commandQueue

This member stores the string for containing all necessary commands for performing a

procedure. It is set to none when no procedure is in progress or after the last command

of a procedure is extracted for being sent to the device. A new command(s) string is set by

slot void SDSCommThread::newCommandQueue(QString cmq).

QString hostIP

This member stores the string indicating the IP address of the device server. Its value is set

by slot void setHostParameters(QString ip,int pt).

80

int hostPort

This member stores the number indicating the device server’s communication port through

which the socket connection has to be established. Its value is set by slot void

setHostParameters(QString ip,int pt).

QString newCommand

This member stores the specific command that has to be immediately sent to the device. It

remains set to none if no specific command has to be sent.

QString periodicCommand

This member stores the periodic command that has to be sent to the device. It remains set to

none if no periodic command is necessary.

QTcpSocket *socket

This member is a pointer to the QTcpSocket object that communicates through the

socket connection with the device server. Its connection parameters are set by slot void

setHostParameters(QString ip,int pt) and stored in members QString hostIP and int

hostPort.

QTimer timer

This member is the repetitive timer for calling at regular intervals slot void

SDSCommThread::timerHit(), responsible for checking whether there is a command to

be sent to the device and for sending it. Its timeout interval is set by slot void

SDSCommThread::setCommandInterval(int cmi).

Public slots

void SDSCommThread::connectToHost()

This slot is a shortcut for calling void QTcpSocket::connectToHost(QString hostIP,int

hostPort) for member QTcpSocket socket.

void SDSCommThread::disconnectFromHost()

This slot terminates the communication thread, by calling void QThread::terminate(), closes

81

the socket connection, by calling void QTcpSocket::disconnectFromHost() for member

QTcpSocket socket, and sets to none the value for awaitingCommand, commandQueue and

newCommand.

void SDSCommThread::newCommandQueue(QString ncq)

This slot replaces the content of QString commandQueue with the content of QString ncq

and, if no command is

awaiting response from the device, calls void SDSCommThread::nextCommandInQueue() for

extracting from the new command queue the first command to send.

void SDSCommThread::setCommandInterval(int cmi)

This slot sets to int cmi the value for member int cmdPeriod, the minimum time interval

between two consecutive commands.

void SDSCommThread::setHostParameters(QString ip, int pt)

This slot sets the value for QString hostIP with the content of string QString ip, and the

value for int hostPort with the value for int pt.

void SDSCommThread::setPeriodicCommand(QString pcm)

This slot sets to QString pcm the value for member QString periodicCommand, the command

that has to be regularly sent to the device.

Private slots

void SDSCommThread::run()

reimplemented from virtual void QThread::run()

This slot starts in the thread the repetitive timer QTimer timer, with a timeout interval equal

to int cmdPeriod.

void SDSCommThread::timerHit()

This slot is called every int cmdPeriod milliseconds for checking if there is a command to be

sent to the device, and in case for sending it.

82

Protected slots

void SDSCommThread::error(QAbstractSocket::SocketError se)

This slot is called whenever an error occurs in the socket connection. It emits the signal void

SDSCommThread::socketError(QAbstractSocket::SocketError) for passing the occurred

error to other objects, and it calls virtual void

SDSCommThread::socketErrorOccurred(QAbstractSocket::SocketError se) for tacking

the opportune actions in case of an error occurred in the socket connection.

void SDSCommThread::nextCommandInQueue()

This slot extracts from the command queue stored in string QString commandQueue the

command to be sent to be sent to the device, and stores such command in string QString

newCommand.

void SDSCommThread::readSocket()

This slot is called whenever an new message is ready to be read in QTcpSocket *socket.

It reads the incoming messages from the socket connection, calls slot virtual void

SDSCommThread::processMessage(QString msg) for analysing the received message and

taking the opportune decisions, and emits signal void SDSCommThread::newMessage(QString

msg) for passing to other objects the received signal.

void SDSCommThread::state(QAbstractSocket::SocketState st)

This slot is called whenever the socket connection state changes. It emits the

signal void SDSCommThread::socketState(QAbstractSocket::SocketState) for passing

to other objects the information about the new connection state, and executes the

following default actions if the new state is QAbstractSocket::ConnectedState and

QAbstractSocket::UnconnectedState. In the first case, it starts the SDSCommThread thread,

while in the second case it terminates the SDSCommThread thread and sets to none the string

stored in awaitingCommand, commandQueue and newCommand. This slot also calls virtual

void SDSCommThread::socketStateChanged(QAbstractSocket::SocketState st) for

taking further opportune decisions accordingly to the new socket’s state.

void SDSCommThread::writeToSocket(QString cmd)

This slot emits the signal void SDSCommThread::newCommandGiven(QString) for passing to

83

other objects the command that is set to be sent, if it’s different to the periodic command,

then calls virtual void SDSCommThread::composeCommand(QString cmd) for formatting

the command string accordingly to the device control software syntax requirements, and

calls quint64 QIODevice::write(const char *data) for member *socket for sending the

command string through the socket.

Virtual protected slots

virtual QString SDSCommThread::composeCommand(QString cmd)

This slot has to be implemented for formatting the command string accordingly to the device

rules for accepting commands through a socket connection.

virtual void SDSCommThread::processMessage(QString msg)

This slot has to be implemented for analysing all messages from the device and taking the

opportune decisions.

virtual void SDSCommThread::setAwaitingCommand()

This slot has to be implemented for storing in string awaitingCommand those commands for

which it is necessary to wait for a response from the device before sending another command.

virtual void SDSCommThread::socketErrorOccurred(QAbstractSocket::SocketError se)

This slot has to be implemented for triggering the opportune actions whenever an error occurs

in the socket connection, and accordingly to the error type.

virtual void SDSCommThread::socketStateChanged(QAbstractSocket::SocketState st)

This slot has to be implemented for triggering the opportune actions whenever the state of the

socket connection changes, and accordingly to the new connection state.

84

Signals

void SDSCommThread::newCommandGiven(QString ncg)

Whenever a command is given to the device, exception given, for the periodic command, this

signal is emitted for passing to other objects the string containing newly given command.

void SDSCommThread::newMessage(QString msg)

Whenever a message is received from the device, this signal is emitted for passing the string

containing the received message.

void SDSCommThread::socketError(QAbstractSocket::SocketError se)

Whenever an error occurs in the socket connection, this signal is emitted for passing the

information about the occurred error.

void SDSCommThread::socketState(QAbstractSocket::SocketState st)

Whenever the socket connection state changes, this signal is emitted for passing the information

about the new connection state.

Established signal/slot connections

Signal void QAbstractSocket::readyRead(), emitted by member QTcpSocket *socket

to slot void SDSCommThread::readSocket()

This connection allows the reading of all incoming messages as soon as they are ready.

Signal void QAbstractSocket::error(QAbstractSocket::SocketError), emitted by

member QTcpSocket *socket

to slot void SDSCommThread::error(QAbstractSocket::SocketError)

This connection ensures that the opportune decisions are taken whenever an error occurs in

the socket connection.

85

Signal void QAbstractSocket::state(QAbstractSocket::SocketState), emitted by

member QTcpSocket *socket

to slot void SDSCommThread::stateChanged(QAbstractSocket::SocketState)

This connection ensures that the opportune decisions are taken whenever the state changes in

the socket connection.

5.4 SDSAntenna class

5.4.1 Class overview

SDSAntenna is the base class for building an object for configuring and controlling a telescope.

This class inherits from SDSDevice: members and slots, that have already been declared in

SDSDevice class, have in this subclass same roles and functions mentioned in section § 5.2,

with some obvious exceptions. The large number of graphic members in a SDSAntenna object

suggested to organize a default layout for both the main widget and the secondary windows.

Figures 5.2 and 5.3 display the adopted default layouts, and are used in this section for helping

in describing the class and its objects functionalities.

Figure 5.2: SDSAntenna main widget’s default layout.

The task the antenna has to continuously perform during the observation is the source’s

TRACKING. For this reason member QPushButton Start displays the text Track. Member

QPushButton Stop, displaying the text Stop, is instead the button for manually stopping this

86

Figure 5.3: SDSAntenna secondary window’s default layout.

task.

Member SDSEdit Status, placed at the top center of the SDSAntenna widget and

displaying in its label the text Antenna, is devoted for displaying whether the antenna is

TRACKING a source, SLEWING to source’s coordinates or other similar situations. At its right

find place the button QPushButton auxiliaryWindowShow, displaying text Pars/Log, for

showing the secondary window QWidget auxiliaryWindow, and the button SDSStatusButton

deviceAct, the red button displaying no text, for enabling and disabling the control of the

antenna.

In the center of the widget can be found the two buttons, members QPushButton

LoadSetup, displaying text Load setup, and QPushButton ReloadSetup, displaying text

87

Reload setup, and the field, member SDSEdit SetupFile, whose label displays text Setup

file, for managing the setup file. Slot void SDSAntenna::readSetupLine(QString sl) has

been implemented from virtual void SDSDevice::readSetupLine(QString sl) for setting

the source name and coordinates, keyword Source, possible offsets in the given coordinates,

keyword Offsets, and setting receiver’s parameters, keyword Receiver. Just below the setup

objects, finds place member SDSEdit ManualCommand, whose label displays text Command.

Parameters object introduced here are members SDSCombo CoordSys, displaying text

Coord system, for selecting the coordinate system through which source coordinates are given,

SDSCombo OffsetFrame, displaying text Offsets, for selecting the coordinate system for the

position offsets. Members SDSEdit Longitude and SDSEdit Latitude, placed below SDSCombo

CoordSys, manage respectively the longitude and latitude coordinate in the selected coordinate

system, while members SDSEdit LongOffset and SDSEdit LatOffset, placed below SDSCombo

OffsetFrame, manage the offset value respectively in the longitude and latitude coordinate in

the selected frame for the offsets themselves. Member SDSCombo AzSector, displaying text

Azimuth sect, manages allows the selection of the telescope azimuth wrap.

Member SDSEdit SourceName manages the name of the source to be observed. Its label

is replaced by member QPushButton SourceNameBt, displaying text Source name, which pops

up the SDSCatalogue *sourceCat window, the window for the source catalogue. If the name

of a catalogue source is manually typed in SDSEdit SourceName, its catalogue coordinates are

automatically loaded and displayed in SDSEdit Longitude and SDSEdit Latitude.

Member SDSEdit SystemStatus, displaying text System, is a not editable SDSEdit

object, devoted to display the antenna system status, i.e. whether the antenna system is

working without problems or there are issues that may affect the antenna operations and/or

performances.

Members QPushButton Park and QPushButtons Unpark, displaying their names as text,

are those buttons that allow the antenna manual parking and unparking.

Member SDSCombo Receiver, displaying text Receiver, is devoted to selecting the

receiver to be used, by displaying their parameters’ widgets, while member QPushButton

ConfigureReceiver, displaying text Configure, is the button for manually configuring the

antenna with the selected receiver. They are placed under member QLabel ReceiverLabel,

displaying text Receiver manager.

Member QWidget auxiliaryWindow, displayed in figure 5.3, hosts SDSLog deviceLog and

a set of non editable SDSEdit objects devoted to display the antenna system parameters, whose

list is here below:

88

1 SysUTC (label UT): the current UTC;

2 LST (label LST): the local sidereal time;

3 SystemStatusMn (label System status): the status of the system,

as already described for member SDSedit SystemStatus in the main

widget. SDSedit SystemStatus always displays the value displayed in

SystemStatusMn;

4 PointingStatusMn (label Pointing status): the antenna pointing

status, as already described for member SDSedit Status in the main

widget. SDSedit Status always displays the value displayed in

PointingStatusMn;

5 SourceNameMn (label Source name): the source name;

6 Azimuth (label Azimuth): antenna azimuth;

7 Elevation (label Elevation): antenna elevation;

8 RightAscension (label Right Ascension): right ascension of the

current pointing;

9 Declination (label Declination): declination of the current pointing;

10 GalacticLongitude (label Galactic Longitude): galactic longitude of

the current pointing;

11 GalacticLatitude (label Galactic Latitude): galactic latitude of the

current pointing;

12 AzimuthError (label Azimuth Error): difference between the azimuth

values for requested and pointed position;

13 AzimuthCorrection (label Azimuth Correction): apported correction

to the source azimuth;

14 AzimuthOffset (label Azimuth Offset): value for the pointing offset in

the azimuth coordinate;

15 ElevationError (label Elevation Error): difference between the

elevation values for requested and pointed position;

89

16 ElevationCorrection (label Elevation Correction): apported

correction to the source elevation;

17 ElevationOffset (label Elevation Offset): value for the pointing

offset in the elevation coordinate;

18 RefractionElevationCorrection (label Refraction Elevation

Correction): correction to the source elevation due to the atmosphere’s

light refraction;

19 RaOffset (label Right Ascension Offset): value for the pointing offset

in the right ascension coordinate;

20 DeclOffset (label Declination Offset): value for the pointing offset

in the declination coordinate;

21 GalLongitudeOffset (label Galactic Longitude Offset): value for

the pointing offset in the galactic longitude coordinate;

22 GalLatitudeOffset (label Galactic Latitude Offset): value for the

pointing offset in the galactic latitude coordinate;

23 ReceiverCode (label Receiver Name): the code that identifies the

receiver in focus;

24 LOFrequency (label Local oscillator frequency): the local oscillator

frequency, in MHz.

Members SDSSource source, SDSReceiver receiver and SDSTelescope telescope

store the informations about the selected source, the selected receiver and the telescope

parameters.

Slot

void SDSAntenna::setChildrenStyle(QFont cf,QPalette cp) has been implemented from

virtual void SDSDevice::setChildrenStyle(QFont cf,QPalette cp) so that it calls

void QWidget::setFont(QFont cf) and void QWidget::setPalette(QPalette cp) for the

SDSCatalogue *sourceCat widget, since it is placed in a dedicated window.

90

5.4.2 Technical description

Class SDSAntenna is an SDSDevice derived class, for which all functionalities for managing an

antenna have been implemented in those tasks and algorithms that can be considered generic

for an antenna, while a set of virtual slots has been declared, for implementing in SDSAntenna

subclasses the antenna peculiarities.

Twelve fully implemented slots, nine public and three protected, perform those tasks that

can be considered independent from the antenna system details.

Slot void SDSAntenna::changeCoordSys(int csi), connected to

the void SDSCombo::newIndex(int) signal emitted by member SDSCombo CoordSys, has as

argument selected coordinate system item index in SDSCombo CoordSys items list. It changes

texts displayed in SDSEdit Longitude and SDSEdit latitude labels, so that they show the

coordinate name in the selected frame and, disables QPushButton SourceNameBt if it has been

selected the horizontal frame, while in all their cases enables this button and loads the catalogue

coordinates for the source whose name is displayed in SDSEdit SourceName, if the source is

present in the implemented catalogue.

As already mentioned, in order to have a source catalogue class SDSCatalogue has to be

subclassed and member sourceCat has to be recasted to the fully implemented SDSCatalogue

subclass. All signal slot connections have to be set after the mentioned recast. Slot void

SDSAntenna::createCatalogueConnections() established all necessary connections, namely:

i Signal void SDSCatalogue::newSourceParameters(QString) to slot

virtual void SDSAntenna::updateSourceParameters(QString): the

passed string contains the catalogue selected source’s name and

coordinates, while the called slot updates these values in members

SourceName, Phi, Theta and CoordSys;

ii Signal void QPushButton::clicked(),

emitted by member SourceNameBt, to slot void QWidget::show() for

sourceCat: this action opens the catalogue window;

iii Signal void

SDSValue::newValue(QString), emitted by member SourceName, to

slot virtual void SDSCatalogue::findSourceCoords(QString): the

passed string is the newly set source name, and the called slot queries

the catalogue for finding the coordinates for the source;

91

Slots void

SDSAntenna::newCoordSys(QString), void SDSAntenna::newSourceName(QString), void

SDSAntenna::newLongitude(QString) and void SDSAntenna::newLatitude(QString) are

responsible for passing the source parameters whenever their value changes. They are connected

to the signal void SDSValue::newValue(QString), emitted by members SDSCombo CoordSys,

SDSEdit SourceName, SDSEdit Longitude and SDSEdit Latitude respectively, they set the

new value in the correspondent member in object SDSSource source, then emit the void

SDSAntenna::SourceParameters(SDSSource *), so that all source parameters are passed with

the updated value. In the case of a catalogue source these slots are redundant, while in the

opposite case they represent the only mean to pass source parameters to other objects.

Slot void SDSAntenna::readSetupLine(QString sl) has been implemented from

virtual void SDSDevice::readSetupLine(QString sl) for setting the source name and

coordinates, keyword Source, possible offsets in the given coordinates, keyword Offsets,

and setting receiver’s parameters, keyword Receiver. For the first two mentioned

keywords, Source and Offsets, the analysis of the setup line is already implemented,

while for the last one, Receiver, the line analysis is deferred to slot virtual

void SDSAntenna::readReceiverLine(QString rl). The analysis of all lines that

do not start with any so far mentioned keyword is deferred to slot virtual void

SDSDevice::readCustomLine(QString sl), accordingly to the basic prescription indicated

in §5.2.

Slot void SDSAntenna::selectReceiver(QString recString) allows the receiver

selection, through the corresponding identification string, in the SDSCombo ReceiverCombo

items list, by simply calling void SDSCombo::setValue(QString recString) for member

SDSCombo ReceiverCombo.

Slot void SDSAntenna::setOffsetsFrame(int of), connected

to signal void SDSCombo::NewIndex(int) emitted by member SDSCombo OffsetsFrame, it’s

called whenever the selected item changes in SDSCombo OffsetsFrame It sets texts in the labels

for LongOffsets and LatOffsets, so that the coordinate names for the pointing offsets are the

correct ones for the selected frame. If the SDSCombo OffsetsFrame selected item is Off, which

corresponds to the item index 0 and means that no pointing offsets are demanded, SDSEdit

LongOffsets and SDSEdit LatOffsets are cleared and hidden. All other selections show these

two objects but do not change their value.

Slot void SDSAntenna::setTrackLimits(float la,float le, float ua, float ue)

sets the values for SDSAntenna members that store the antenna limits in azimuth and elevation,

92

namely float minAz and float maxAz for the minimum and maximum azimuth value, and

float minEl and float maxEl for the minimum and maximum elevation value. Their

arguments set, in the order, the minimum value for the azimuth, the minimum value for the

elevation, the maximum value for the azimuth, the maximum value for the elevation.

The antenna position is checked with respect to the track limits by protected slot

void SDSAntenna::checkTrackLimits(). This slot extracts the current position from

members Azimuth and Elevation and compares them to their minimum and maximum

values. If limits are reached, signals void SDSAntenna::azimuthLimitReached() or void

SDSAntenna::elevationLimitReached() are emitted, depending on the reached track limit.

Protected slot void SDSAntenna::configureReceiver() is responsible for executing all

necessary tasks for placing a receiver in its focal position and configuring the whole antenna

accordingly to the selection and the receiver’s parameters values. It calls, at first, slot virtual

QString SDSAntenna::getReceiverConfigCommand(int rci), by setting its argument equal

to the SDSCombo ReceiverCombo current index, so that it builds the the string containing all

configuration commands, then transfers the command queue to the communication thread.

Protected slot void SDSAntenna::updateAntennaStatus() is devoted to displaying the

current pointing in the SDSAntenna main widget. It sets the values for SDSEdit Longitude and

SDSEdit Latitude with the coordinates values in the system indicated by SDSCombo CoordSys

and, if a frame is selected in SDSCombo OffsetsFrame does the same for the offsets values. This

slot is not called anywhere in SDSAntenna and it has to be used with caution in order to avoid

confusions or interferences with the requested coordinates values.

Eight virtual slots, seven public and one protected, have been declared for performing those

tasks whose goal is well identified, but their algorithms depend on the antenna system. Slots

virtual void SDSAntenna::park() and virtual void SDSAntenna::unpark() have to be

implemented for respectively parking or unparking the antenna, either by clicking buttons

Park or Unpark to which they are respectively connected, or by calling them in the code as a

consequence of some situations that may require so.

Slot virtual void SDSAntenna::buildReceiverInfos() has to be implemented for

setting in SDSReceiver receiver the values for the selected receiver. Its called inside

slot void SDSAntenna::configureReceiver() after the receiver’s configuration commands

are sent to the antenna server, but just before the emission of the signal void

SDSAntenna::receiverParameters(SDSReceiver *) that passes these informations to other

objects.

Slot virtual void SDSAntenna::checkAntennaStatus() has to be implemented for

93

analysing the antenna system parameters, i.e. the ones displayed in QWidget auxiliaryWindow

and take decisions accordingly to the situation. A good policy may be to call this slot inside

virtual void SDSAntenna::getAntennaParameters(QString parstring), whose argument

is the string received from the antenna system that contains the antenna current parameters,

and devoted to firstly display the received parameters’ values in the opportune SDSEdit and

later to trigger all system checks.

Slot virtual QString SDSAntenna::getReceiverConfigCommand(int recIndex) has

to be implemented for building the queue of commands that is necessary for configuring the

selected receiver accordingly to the given parameters. Its argument is the receiver index, which

corresponds to the item index if the receiver in the SDSCombo ReceiverCombo item list.

Slot virtual void SDSAntenna::readReceiverLine(QString) has to be implemented

for reading the setup line where receiver parameters are indicated and assigning their values to

the opportune SDSValue objects.

Slot virtual void SDSAntenna::updateSourceParameters(QString sourceString)

has to be implemented for reading the source parameters string sourceString that comes

from SDSCatalogue *sourceCat after the selection of a source. This slot has to be virtual

since the organization of the values in QString sourceString depends on the SDSCatalogue

fully implemented subclass.

The protected slot virtual void SDSAntenna::selectReceiver(int recIndex) has to

be implemented for displaying in the main widget those parameters objects that allow the

management of the parameters for the selected receiver. Its argument is the receiver index

in SDSCombo ReceiverCombo, and its connection to signal void SDSCombo::newIndex(int)

ensures that this slot is called whenever its index changes.

Seven signals have been also implemented, some of them have been already mentioned.

void

SDSAntenna::azimuthLimitReached() and void SDSAntenna::elevationLimitReached()

are emitted whenever the antenna reaches its azimuth or elevation limit position

respectively; void SDSAntenna::sourceParameters(SDSSource *) passes the whole set of

source parameters, and similarly void

SDSAntenna::receiverParameters(SDSReceiver *) passes the whole set of parameters for

the currently configured receiver; void SDSAntenna::currentPointingStatus(QString) and

void SDSAntenna::currentSystemStatus(QString) pass the string that describe the status

displayed in members SDSEdit Status and SDSEdit SystemStatus respectively, while signal

void SDSAntenna::trackingFailure() is meant to be emitted in case of a severe failure in

94

the source tracking.

SDSDevice virtual slots that have not yet been implemented need to be implemented in

the fully implemented SDSAntenna subclass. In particular, slot void SDSDevice::start() has

to be implemented for pointing the antenna to the source and tracking it, and if necessary, slot

void SDSDevice::stop() has to be implemented for stopping the source tracking.

The building of a fully implemented object devoted to manage a specific antenna needs

the subclassing of class SDSAntenna and, in particular, the following steps in the given order:

1) class SDSCommThread is subclassed so that all its virtual slots can be

implemented, again accordingly to the antenna specific functionalities;

2) member SDSCommThread *commThread is recasted to the fully

implemented SDSCommThread subclass;

3) slot void SDSDevice::createConnections() is called for establishing

all necessary signal/slot connections between SDSCommThread

*commThread and its parent object;

4) class SDSCatalogue is subclassed so that all its virtual slots can be

implemented, accordingly to the catalogue to be built;

5) member SDSCatalogue *sourceCat is recasted to the fully implemented

SDSCatalogue subclass;

6) slot void SDSDevice::createCatalogueConnections() is called for

establishing all necessary signal/slot connections between SDSCatalogue

*sourceCat and its parent object;

7) all SDSDevice and SDSAntenna virtual slots are fully implemented

accordingly to the antenna specific functionalities.

Inheritance

Inherits from: SDSDevice

95

Public members

SDSCombo AzSector

This member is the SDSCombo object for setting and displaying the preferred azimuth wrap.

QPushButton ConfigureReceiver

This button is devoted for manually triggering the slot that performs all necessary tasks for

placing the selected receiver in focus and configuring the antenna accordingly to the selected

receiver and its parameters.

SDSCombo CoordSys

This member is the SDSCombo object for selecting and displaying the coordinate system.

SDSEdit Latitude

This member is the SDSEdit object for setting and displaying the latitude coordinate in the

selected coordinate system, i.e. Elevation, Declination or Galactic Latitude.

SDSEdit LatOffset

This member is the SDSEdit object for setting and displaying the pointing offset in the latitude

coordinate, in the coordinate system selected for the offsets.

SDSEdit Longitude

This member is the SDSEdit object for setting and displaying the longitude coordinate in the

selected coordinate system, i.e. Azimuth, Right Ascension or Galactic Longitude.

SDSEdit LongOffset

This member is the SDSEdit object for setting and displaying the pointing offset in the longitude

coordinate, in the coordinate system selected for the offsets.

SDSCombo OffsetsFrame

This member is the SDSCombo object for selecting and displaying the coordinate system for the

pointing offsets.

96

QPushButton Park

This member is the button for manually triggering the slot for parking the antenna.

SDSCombo ReceiverCombo

This member is the SDSCombo object for selecting the receiver and displaying the selection.

QLabel ReceiverLabel

This widget is the label for identifying the frame devoted to the receivers management.

SDSSource source

This member is the SDSSource object for storing and passing the source parameters.

SDSCatalogue *sourceCat

This member is a pointer to the SDSCatalogue object that manages the sources catalogue. It

has to be recasted, in the fully implemented SDSAntenna subclass, to the fully implemented

SDSCatalogue subclass.

SDSEdit SourceName

This member is the SDSEdit object for setting and displaying the source name.

QPushButton SourceNameBt

This button is devoting for opening the SDSCatalogue *sourceCatalogue window.

SDSEdit SystemStatus

This member is a not editable SDSEdit object devoted for displaying the antenna system status.

QPushButton Unpark

This button is devoted for manually triggering the slot for unparking the antenna.

Protected members

SDSEdit Azimuth

This member is the SDSEdit object that displays the antenna current azimuth.

97

SDSEdit AzimuthCorrection

This member is the SDSEdit object that displays the apported azimuth correction due to the

pointing model.

SDSEdit AzimuthError

This member is the SDSEdit object that displays the difference between the requested and

current azimuth.

SDSEdit AzimuthOffset

This member is the SDSEdit object that displays the current pointing offset in azimuth.

SDSEdit Declination

This member is the SDSEdit object that displays the antenna current declination.

SDSEdit DeclOffset

This member is the SDSEdit object that displays the current pointing offset in declination.

SDSEdit Elevation

This member is the SDSEdit object that displays the antenna current elevation.

SDSEdit ElevationCorrection

This member is the SDSEdit object that displays the apported elevation correction due to the

pointing model.

SDSEdit ElevationError

This member is the SDSEdit object that displays the difference between the requested and

current elevation.

SDSEdit ElevationOffset

This member is the SDSEdit object that displays the current pointing offset in elevation.

SDSEdit GalacticLatitude

This member is the SDSEdit object that displays the antenna current Galactic latitude.

98

SDSEdit GalacticLongitude

This member is the SDSEdit object that displays the antenna current Galactic longitude.

SDSEdit GalLatitudeOffset

This member is the SDSEdit object that displays the current pointing offset in the Galactic

latitude.

SDSEdit GalLongitudeOffset

This member is the SDSEdit object that displays the current pointing offset in the Galactic

longitude.

SDSEdit LOFrequency

This member is the SDSEdit object that displays the frequency of the local oscillator for the

receiver in focus.

SDSEdit LST

This member is the SDSEdit object that displays the antenna system’s local sidereal time.

float minAz

This member stores the lower limit for the antenna azimuth.

float minEl

This member stores the lower limit for the antenna elevation.

float maxAz

This member stores the upper limit for the antenna azimuth.

float maxEl

This member stores the upper limit for the antenna elevation.

SDSEdit PointingStatusMn

This member is the SDSEdit object that displays the antenna pointing status in QWidget

auxiliaryWindow.

99

SDSEdit RaOffset

This member is the SDSEdit object that displays the current pointing offset in right ascension.

SDSEdit ReceiverCode

This member is the SDSEdit object that displays the name of the receiver currently in focus.

SDSEdit RefractionElevationCorrection

This member is the SDSEdit object that displays the apported elevation correction due to

atmosphere light refraction.

SDSEdit RightAscension

This member is the SDSEdit object that displays the antenna current right ascension.

SDSEdit SourceNameMn

This member is the SDSEdit object that displays the source name, as stored in the antenna

system.

SystemStatusMn

This member is the SDSEdit object that displays the antenna system status in QWidget

auxiliaryWindow.

SDSEdit SysUTC

This member is the SDSEdit object that displays the antenna system’s UTC.

Public slots

void SDSAntenna::changeCoordSys(int cs)

This slot sets texts for labels of members SDSEdit Longitude and SDSEdit Latitude, so

that they display the names of the coordinates in the selected coordinate system. It disables

QPushButton SourceNameBt, if the horizontal system is selected, while in all other cases it

enables the mentioned button and loads the catalogue coordinates, in the selected system, for

the source whose name is displayed by SDSEdit SourceName, if the source is in the catalogue.

Its argument is the item index in SDSCombo CoordSys for the selected coordinate system.

100

void SDSAntenna::createCatalogueConnections()

This slot establishes the signal/slot connections involving member SDSCatalogue *sourceCat.

The connections it sets are:

i Signal void SDSCatalogue::newSourceParameters(QString) to slot

virtual void SDSAntenna::updateSourceParameters(QString): the

passed string contains the catalogue selected source’s name and

coordinates, while the called slot updates these values in members

SDSEdit SourceName, SDSEdit Longitude, SDSEdit Latitude and

SDSCombo CoordSys;

ii Signal void QPushButton::clicked(),

emitted by member SourceNameBt, to slot void QWidget::show() for

sourceCatalogue: this action opens the catalogue window;

iii Signal void SDSValue::newValue(QString),

emitted by member SDSEdit SourceName, to slot virtual void

SDSCatalogue::findSourceCoords(QString): the passed string is the

newly set source name, and the called slot queries the catalogue for

finding the coordinates for the source;

This slot has to be called, in the fully implemented SDSAntenna subclass, after having recasted

SDSCatalogue *sourceCat to the fully implemented SDSCatalogue subclass.

SDSAntenna::newCoordSys(QString ncs)

This slot sets in member SDSSource source the value ncs for the coordinate system, then

emits the void SDSAntenna::sourceParameters(SDSSource *) signal for passing to other

object the full set of updated source’s parameters.

SDSAntenna::newLatitude(QString nth)

This slot sets in member SDSSource source the value nth for the source latitude coordinate,

then emits the void SDSAntenna::sourceParameters(SDSSource *) signal for passing to

other object the full set of updated source’s parameters.

void SDSAntenna::newLongitude(QString nph)

This slot sets in member SDSSource source the value nph for the source longitude coordinate,

101

then emits the void SDSAntenna::sourceParameters(SDSSource *) signal for passing to

other object the full set of updated source’s parameters.

void SDSAntenna::newSourceName(QString nsn)

This slot sets in member SDSSource source the value nsn for the source name, then emits the

void SDSAntenna::sourceParameters(SDSSource *) signal for passing to other object the

full set of updated source’s parameters.

void SDSAntenna::readSetupLine(QString sl),

reimplemented from virtual void SDSDevice::readSetupLine(QString sl)

This slot has been reimplemented for reading the setup lines containing the keywords Source,

Offsets and Receiver. The implementation of the Source keyword allows the following

syntaxes:

i) Source = [Source name]

ii) Source = [Source name], [Coord sys]

iii) Source = [Source name], [Coord sys], [long value], [lat value]

The first syntax load the catalogue coordinates in the currently selected coordinate system, for

the source whose name is Source name. The second syntax loads the catalogue coordinates in

the coordinate system given by Coord sys, again for the source whose name is Source name. The

third syntax loads the requested long value and lat value coordinates, meant as the longitude

and latitude coordinate in the given system Coord sys, for a source whose name is Source

name. The third syntax obviously is mandatory for sources not present in the catalogue object

SDSCatalogue *sourceCat. The implementation of the Offsets keyword allows the following

syntaxes.

i) Offsets = Off

ii Offsets = [Coord sys], [long offset], [lat offset]

The first syntax selects the item Off in SDSCombo OffsetsFrame, hence no pointing offsets

are set, while the second syntax selects the item Coord sys in SDSCombo OffsetsFrame, then

assigns the values long offset and lat offset to members SDSedit LongOffset and SDSedit

LatOffset respectively. The implementation of the Receiver keyword calls slot virtual void

102

SDSAntenna::readReceiverLine(QString sl) by setting as its argument the whole setup line

sl. If the keyword is none of the ones mentioned above, readSetupLine() calls virtual void

SDSAntenna::readCustomLine(QString sl), again setting as its argument the whole setup

line sl.

void SDSAntenna::selectReceiver(QString rcname)

This slot allows to select the receiver in member SDSCombo ReceiverCombo, by using the string

that identifies the receiver in the ReceiverCombo items list.

void SDSAntenna::setChildrenStyle(QFont cf, QPalette cp), reimplemented from

virtual void SDSDevice::setChildrenStyle(QFont cf, QPalette cp)

This slot set to cf the text font and to cp the color palette for the SDSCatalogue *sourceCat

widget, since it’s located in a dedicated window.

void SDSAntenna::setOffsetsFrame(int ofi)

This slot takes as argument the index ofi of the selected item in SDSCombo OffsetsFrame. If

the index value is 0, which corresponds to item Off, members LongOffsets and LatOffsets

are cleared and hidden, while in all other cases they are shown and the text in their label is set

to the name of the coordinate they represent in the selected frame for the pointing offsets.

void SDSAntenna::setTrackLimits(float la, float le, float ua, float ue)

This slot sets the minimum and maximum accepted values for both azimuth and elevation while

tracking a source. Its arguments respectively are the minimum azimuth value, the minimum

elevation value, the maximum azimuth value and the maximum elevation value.

Virtual public slots

virtual void SDSAntenna::antennaPark()

This slot has to be implemented to composing the necessary commands to park the antenna

and transferring the parking command queue to SDSCommThread *commThread.

virtual void SDSAntenna::antennaUnpark()

This slot has to be implemented to composing the necessary commands to unpark the antenna

103

and transferring the parking command queue to SDSCommThread *commThread.

virtual void SDSAntenna::checkAntennaStatus()

This slot has to be implemented for performing all necessary runtime system checks.

virtual void SDSAntenna::getAntennaParameters(QString parString)

This slot has to be implemented for reading the string that contains the antenna system

parameters and for storing the parameters’ values in the SDSEdit objects placed in QWidget

auxiliaryWindow.

virtual QString SDSAntenna::getReceiverConfigCommand(int recIndex)

This slot has to be implemented for building and returning all necessary commands for placing

the receiver in focus and accordingly configuring the antenna and the receiver itself. Its

argument is the index for the receiver code that identifies it in the SDSCombo ReceiverCombo

items list.

virtual void SDSAntenna::readReceiverLine(QString rsl)

This slot has to be implemented for reading the setup line QString rsl that contain the

parameters for selecting the receiver and setting its parameters.

virtual void SDSAntenna::updateSourceParameters(QString parString)

This slot has to be implemented for reading the source parameters string QString parString

that comes from SDSCatalogue *sourceCatalogue after the selection of a source, accordingly

to the syntax implemented in the fully implemented SDSCatalogue subclass.

Protected slots

void SDSAntenna::checkTrackLimits()

This slot checks the current antenna’s azimuth and elevation against their limits for tracking a

source. Signal void SDSAntenna::azimuthLimitReached() is emitted if the antenna reaches

either limit in azimuth, while signal void SDSAntenna::elevationLimitReached() is emitted

if the antenna reaches either limit in elevation.

104

void SDSAntenna::configureReceiver()

This slot performs the task for placing the selected receiver in focus and accordingly

configuring the antenna. It gets first the receiver index from SDSCombo ReceiverCombo, then

calls slot virtual QString SDSAntenna::getReceiverConfigCommand(int) for obtaining all

necessary commands, transfers these commands to SDSCommThread *commThread for being

effectively

sent to the antenna system, calls slot virtual void SDSAntenna::buildReceiverInfos()

for storing the receiver’s parameters in member SDSReceiver receiver, and emits the signal

void SDSAntenna::receiverParameters(&receiver) for passing these informations to other

objects.

void SDSAntenna::updateAntennaStatus()

This slot sets in members SDSEdit Longitude and SDSEdit Latitude, the longitude and

latitude values in the coordinate system indicated in SDSCombo CoordSys, then sets in members

SDSEdit LongOffset and SDSEdit LatOffset the longitude and latitude offset values in the

coordinate system indicated in SDSCombo OffsetsFrame. It has to be used with due caution

in order to avoid conflicts with the requested coordinate values and offsets.

Virtual protected slots

virtual void SDSAntenna::selectReceiver(int rxi)

This slot has to be implemented for showing in the main widget all necessary objects for

configuring the receiver selected in SDSCombo ReceiverCombo. Its argument rxi is the

index for the receiver identification string in the ReceiverCombo items list. A signal/slot

connection between this slot and the void SDSCombo::newIndex(int), emitted by SDSCombo

ReceiverCombo, ensures that this slot is called whenever the item index changes in SDSCombo

ReceiverCombo.

Signals

void SDSAntenna::azimuthLimitReached()

This signal is emitted whenever the antenna reaches either limit in azimuth.

105

void SDSAntenna::currentPointingStatus(QString)

This signal is devoted to passing to other object the current antenna pointing status.

void SDSAntenna::currentSystemStatus(QString)

This signal is devoted to passing to other object the current antenna system status.

void SDSAntenna::elevationLimitReached()

This signal is emitted whenever the antenna reaches either limit in elevation.

void SDSAntenna::receiverParameters(SDSReceiver *)

This signal is devoted to passing to other object a reference to a SDSReceiver object containing

the name and all configuration parameters for the selected receiver.

void SDSAntenna::sourceParameters(SDSSource *)

This signal is devoted to passing to other object a reference to a SDSSource object, whose

members contain the name and the coordinates of the selected source.

void SDSAntenna::trackingFailure()

This signal is meant for being emitted whenever a serious tracking problem occurs.

Established signal/slot connections

Signal void QPushButton::clicked(), emitted by member QPushButton

ConfigureReceiver

to slot virtual void SDSAntenna::configureReceiver()

This connection

allows the manual call to slot virtual void SDSAntenna::configureReceiver() when button

QPushButton ConfigureReceiver is clicked.

Signal void QPushButton::clicked(), emitted by member QPushButton Park

to slot virtual void SDSAntenna::antennaPark()

This connection allows the manual call to slot virtual void SDSAntenna::antennaPark()

when button QPushButton Park is clicked.

106

Signal void QPushButton::clicked(), emitted by member QPushButton Unpark

to slot virtual void SDSAntenna::antennaUnpark()

This connection allows the manual call to slot virtual void SDSAntenna::antennaUnpark()

when button QPushButton Unpark is clicked.

Signal void SDSCombo::newIndex(int), emitted by member SDSCombo CoordSys

to slot void SDSAntenna::changeCoordSys(int)

This connection ensures that all necessary tasks are performed when the coordinate system is

changed in member SDSCombo CoordSys.

Signal void SDSCombo::newIndex(int), emitted by member SDSCombo OffsetsFrame

to slot void SDSAntenna::setOffsetsFrame(int)

This connection ensures that all necessary tasks are performed when the coordinate system for

the pointing offsets is changed in member SDSCombo OffsetsFrame.

Signal void SDSCombo::newIndex(int), emitted by member SDSCombo ReceiverCombo

to slot virtual void SDSAntenna::selectReceiver(int)

This connection ensures that the parameters objects are displayed for the selected receiver

whenever the selected item changes in member SDSCombo ReceiverCombo.

Signal void SDSCombo::newValue(QString), emitted by member SDSCombo CoordSys

to slot void SDSAntenna::newCoordSys(QString)

This connection allows the immediate propagation of the newly set source coordinate system,

as it’s given to SDSCombo CoordSys as its new value.

Signal void SDSValue::newValue(QString), emitted by member SDSEdit Latitude

to slot void SDSAntenna::newLatitude(QString)

This connection allows the immediate propagation of the newly set source latitude coordinate,

as it’s given to SDSEdit Latitude as its new value.

Signal void SDSValue::newValue(QString), emitted by member SDSEdit Longitude

to slot void SDSAntenna::newLongitude(QString)

This connection allows the immediate propagation of the newly set source latitude coordinate,

as it’s given to SDSEdit Longitude as its new value.

107

Signal void SDSValue::newValue(QString), emitted by member SDSEdit

PointingStatusMn

to slot void SDSEdit::setValue(QString) for member SDSEdit Status

This connection ensures that the antenna pointing status is immediately displayed in the

SDSAntenna main widget.

Signal void SDSValue::newValue(QString), emitted by member SDSEdit SourceName

to slot void SDSAntenna::newSourceName(QString)

This connection allows the immediate propagation of the newly set source name, as it’s given

to SDSEdit SourceName as its new value.

Signal void SDSValue::newValue(QString), emitted by member SDSEdit SystemStatusMn

to slot void SDSEdit::setValue(QString) for member SDSEdit SystemStatus

This connection ensures that the antenna system status is immediately displayed in the

SDSAntenna main widget.

5.5 SDSBackend class

5.5.1 Class overview

Class SDSBackend is the base class for building objects that control a backend. This

class is inherited from class SDSDevice and is implemented in those functionalities that are

common to any backend. The large number of objects in a SDSBackend widget suggested the

implementation of a default graphic organization of this object. Figure 5.4 displays the adopted

layout.

Figure 5.4: SDSBackend widget default layout.

108

All necessary parameters for the data acquisition can be divided in two groups. The first

group contains those parameters that are present in the configuration of any backend, which can

be called backend independent parameters, while the second group contains those parameters

that are specific for a given backend, since they are strictly related to the way a given backend

processes the signal, hence can be called backend custom parameters.

For each backend independent parameter, a dedicated SDSValue object has been declared

as member of a SDSBackend object. These parameters are:

01) SDSEdit Mode: the backend data acquisition mode;

02) SDSEdit ObsLength: the data acquisition length, in seconds;

03) SDSEdit ObsStartHour: the data acquisition UTC start time;

04) SDSEdit Frequency: the central value in MHz for the frequency band;

05) SDSEdit Bandwidth: the width in MHz for the frequency band;

06) SDSEdit ChannelWidth: the width in MHz for each frequency channel;

07) SDSEdit NumberOfChannels: the number of frequency channels;

08) SDSEdit InvertedFreqs: a parameter for indicating if the sky frequency

band is flipped after the signal downconversion process;

09) SDSEdit NumberOfPols: the number of polarizations to represent in the

data;

10) SDSEdit DimensionOfSamples: same as above, inserted for lexical

consistency with some backends;

11) SDSEdit BitsPerSample: the number of bits for representing each data

sample;

12) SDSEdit SamplingTime: the sampling time, in microseconds;

13) SDSEdit SubintTime: the subintegration length, in seconds (pulsar

folding mode only);

14) SDSEdit ProfileBins: the number of bins for representing a pulsar

profile (pulsar folding mode only);

109

Informations about the receiver, the observing session, the source parameters and the

telescope are respectively stored in members SDSReceiver receiver, SDSSession session,

SDSSource source and SDSTelescope telescope.

Member SDSEdit DataFile, displaying text Data file, is a non editable SDSEdit object

for displaying the name of the data file, member QProgressBar AcquisitionProgress is a

progress bar for displaying the data acquisition progress, introduced at its right by member

QLabel AqPrgLb, displaying text Progress.

SDSDevice objects have been placed in the upper part of the widget, with the only

exception of SDSEdit ManualCommanddisplaying text Command, which is placed near the widget

bottom left corner. Objects for managing the backend independent parameters find place in the

left side of the widget, while the right side, which is empty in figure 5.4, is devoted to hosting

the backend custom parameters. Member SDSLog deviceLog has been located in QWidget

auxiliaryWindow.

5.5.2 Technical description

The implementation for class SDSBackend as a subclass of SDSDevice has been obtained through

the following steps:

a) the declaration of the SDSValue objects for managing the values for all

backend independent parameters, and of two boolean variables for storing

the backend status by means of boolean values;

b) the implementation of slots declared virtual in the parent SDSDevice

class;

c) the implementation of slots devoted to perform tasks that are necessary

for any backend;

d) the declaration of virtual slots that have to be implemented in

SDSBackend subclasses;

e) the declaration of opportune signals;

SDSValue objects devoted to the management of backend independent parameters have

already been introduced in the previous section. Two boolean variables, namely members bool

isIdle and bool isRecording, respectively store by means of boolean values the backend’s

idle and recording status.

110

SDSDevice virtual slots for which an implementation has been done in class SDSBackend

are the following ones.

Slot void SDSBackend::enableDevice(bool bl) (public) is implemented for establishing

and closing the socket connection to the backend’s server, accordingly to its argument’s boolean

value: if bl = true the connection is established, if bl = true the connection is closed;

Slot void SDSBackend::readSetupLine(QString stl) (public) has been implemented

for setting the value for all backend independent parameters, if the setup line QString

stl contains the keyword for any of these parameters, or calling virtual void

SDSDevice::readCustomLine(QString sl) in the opposite case.

Slot void SDSBackend::socketError(QAbstractSocket::SocketError) (public) has

been implemented for displaying in SDSLog deviceLog messages that report the occurred error

for QTcpSocket SDSCommThread::*socket. Errors for which a message has been planned are:

0 Connection refused or timed out

1 Connection closed by remote host

2 Host not found

5 Timeout error

7 Network error

-1 Unidentified error

Items in this list are numbered accordingly to the integer value that correspond to the

related item in enum QAbstractSocket::SocketError.

Slot void SDSBackend::socketState(QAbstractSocket::SocketState) (public) has

been reimplemented for reacting in case of changes in the state for QTcpSocket

SDSCommThread::*socket. States for which actions have already been implemented are:

0 Connection closed

3 Connection established

Again, items in this list are numbered accordingly to the integer value that correspond to

the related item in enum QAbstractSocket::SocketState. In both implemented cases, slot

SDSStatusButton::setEnabled(bool) is called for member SDSStatusButton deviceAct,

the boolean value for member bool isEnabled is set accordingly to the new state of the socket

111

connection, and a message about the new socket state is displayed in SDSLog deviceLog.

The boolean value assigned to the argument of slot setEnabled(bool) and to member bool

isEnabled is for both true if the connection has been established, else false.

Fully implemented slots introduced in class SDSBackend are the following ones.

Slot void SDSBackend::setBackendMode(QString bkmode) (public) is devoted to set the

SDSBackend object accordingly to the given data acquisition mode QString bkmode. Three

modes have been implemented, namely baseband, pulsar fold and pulsar search modes.

The slot’s argument has to take one of the following values, accordingly to the selected mode:

BASEBAND, FOLD and SEARCH. This slot shows in the SDSBackend widget those parameters,

among the backend independent ones, which are meaningful for the selected mode, and hides

all others. It also calls backend’s mode’s dedicated virtual slots, which have to be implemented

for setting the backend’s custom functionalities accordingly to the selected mode.

Slots void SDSBackend::setIdle() and void SDSBackend::setRecording() set to

true the boolean value stored in members bool isIdle and bool isRecording respectively,

and to false the other mentioned.

Four slots have been implemented here for setting in any SDSBackend object informations

about the receiver, session, source and telescope parameters. These slots update the values

stored in the related information member, but only when the backend is idle. These slots are:

1) void SDSBackend::setReceiver(SDSReceiver *rec) updates the

receiver’s informations stored in SDSReceiver receiver;

2) void SDSBackend::setSession(SDSSession *ssn) updates the

session’s informations stored in SDSSession session;

3) void SDSBackend::setSource(SDSSource *src) updates the source

informations stored in SDSSource source;

4) void SDSBackend::setTelescope(SDSTelescope *tel) updates the

telescope’s informations stored in SDSTelescope telescope;

Virtual slots declared in this

class are the ones devoted to setting the backend’s custom functionalities for the selected data

acquisition mode, namely virtual void SDSBackend::setBasebandMode() for the BASEBAND

mode, virtual void SDSBackend::setFoldMode(), for the pulsar FOLD mode, and virtual

void SDSBackend::setSearchMode(), for the pulsar SEARCH mode.

112

One signal has been declared in this

class, namely void SDSBackend::dataAcquisitionTerminated(). This signal is meant to

be emitted whenever the data acquisition terminates, regardless of the reason.

The building of a fully implemented object devoted to manage a specific backend needs

the subclassing of class SDSBackend and, in particular, the following steps in the given order:

1) class SDSCommThread is subclassed so that all its virtual slots can be

implemented, again accordingly to the backend specific functionalities;

2) member SDSCommThread *commThread is recasted to the fully

implemented SDSCommThread subclass;

3) slot void SDSDevice::createConnections() is called for establishing

all necessary signal/slot connections between *commThread and its parent

object;

4) all SDSDevice and SDSBackend virtual slots are fully implemented

accordingly to the backend’s specific functionalities.

Inheritance

Inherits from: SDSDevice

Public members

QLabel AqPrgLb

This member is the label for providing a short description for member QProgressBar

AcquisitionProgress.

QProgressBar AcquisitionProgress

This member is the progress bar for displaying the data acquisition progress.

SDSEdit Bandwidth

This member is the SDSEdit object for setting and displaying the frequency band width (MHz).

113

SDSEdit BitsPerSample

This member is the SDSEdit object for setting and displaying the number of bits for representing

each data sample.

SDSEdit ChannelWidth

This member is the SDSEdit object for setting and displaying the width in MHz of each

frequency channel.

SDSEdit DimensionOfSamples

This member is the same as SDSEdit NumberOfPols (see below), provided for consistency to

the terminology of some backends.

SDSEdit DataFile

This member is the not editable SDSEdit object for displaying the name of the data file.

SDSEdit Frequency

This member is the SDSEdit object for setting and displaying the central value in MHz for the

frequency band.

SDSEdit InvertedFreqs

This member is the SDSEdit object for setting and displaying the flag that indicates whether the

frequency order has been flipped (value YES) or not (value NO) after the signal down conversion.

bool isIdle

This member stores by means of a boolean value the backend’s idle status. Its value can be set

by slot void SDSBackend::setIdle(), and it’s equal to true if the backend is idle, otherwise

to false.

bool isRecording

This member stores by means of a boolean value the backend’s recording status. Its value can

be set by slot void SDSBackend::setRecording(), and it’s equal to true if the backend is

recording, otherwise to false.

114

SDSEdit Mode

This member is the SDSEdit object for setting and displaying the data acquisition mode.

SDSEdit NumberOfChannels

This member is the SDSEdit object for setting and displaying the number of channels the

frequency band has been subdivided into.

SDSEdit NumberOfPols

This member is the SDSEdit object for setting and displaying the number of polarizations

to represent in the data. Its values can be 1 = total intensity, 2 = amplitude only for

both polarizations, 4 = amplitude and phase for both polarizations.

SDSEdit ObsLength

This member is the SDSEdit object for setting and displaying the observation length, in seconds.

SDSEdit ObsStartHour

This member is the SDSEdit object for setting and displaying the desidered UTC time for the

start of the data acquisition.

SDSEdit ProfileBins

This member is the SDSEdit object for setting and displaying the number of bins for representing

the pulsar profile (pulsar folding mode only).

SDSReceiver receiver

This member is the SDSReceiver object for storing all receiver’s parameters. It can be set by

calling slot void SDSBackend::setReceiver(SDSReceiver *rec).

SDSEdit SamplingTime

This member is the SDSEdit object for setting and displaying the signal sampling time in µs

(pulsar search mode only).

SDSSession session

This member is the SDSSession object for storing all basic session’s information. It can be set

by calling slot void SDSBackend::setSession(SDSSession *ssn).

115

SDSSource source

This member is the SDSSource object for storing the name and the coordinates for the source

to observe. It can be set by calling slot void SDSBackend::setSource(SDSSource *src).

SDSTelescope telescope

This member is the SDSTelescope object for storing all basic informations about the telescope.

It can be set by calling slot void SDSBackend::setTelescope(SDSTelescope *tel).

SDSEdit SubintTime

This member is the SDSEdit object for setting and displaying the subintegration time in seconds

(pulsar folding mode only).

Public slots

void SDSBackend::enableDevice(bool bl),

reimplemented from virtual void SDSDevice::enableDevice(bool bl)

This slot has been implemented for establishing or closing the connection to the backend’s

server, accordingly to the value of its boolean argument.

void SDSBackend::readSetupLine(QString stl),

reimplemented from virtual void SDSDevice::readSetupLine(QString stl) This slot has

been implemented for assigning values to all backend independent parameter, by analyzing

the argument QString stl. If such string does not contain the keyword for any parameter

belonging to the mentioned group, slot virtual SDSDevice::readCustomLine(QString stl)

is called for checking whether the string stl contains the keyword for a backend custom

parameter and setting it in case.

void SDSBackend::setBackendMode(QString bkmode)

This slot has been implemented for showing, in the SDSBackend widget, the SDSValue objects

that manage those parameters which are meaningful for the selected data acquisition mode.

The possible modes are BASEBAND for baseband data acquisition, FOLD for pulsar folding mode,

and SEARCH for pulsar search mode. This slot also calls the virtual slot devoted to perform

the backend’s custom setup required by the selected data acquisition mode: virtual void

116

SDSBackend::setBasebandMode(), virtual void SDSBackend::setFoldMode() or virtual

void SDSBackend::setSearchMode(), respectively for the BASEBAND, pulsar FOLD and pulsar

SEARCH mode.

void SDSBackend::setIdle

This slot sets to true the value for member isIdle, and to false the value for member

isRecording.

void SDSBackend::setReceiver(SDSReceiver *rec)

This slot sets in member SDSReceiver receiver the parameters for the currently configured

receiver, by assigning to it the corresponding values stored in the SDSReceiver object pointed

by *rec.

void SDSBackend::setRecording

This slot sets to true the value for member isRecording, and to false the value for member

isIdle.

void SDSBackend::setSession(SDSSession *ssn)

This slot sets in member SDSSession session the parameters for the currently set session, by

assigning to it the corresponding values stored in the SDSSession object pointed by *src.

void SDSBackend::setSource(SDSSource *src)

This slot sets in member SDSSource source the parameters for the currently set source, by

assigning to it the corresponding values stored in the SDSSource object pointed by *ssn.

void SDSBackend::setTelescope(SDSTelescope *src)

This slot sets in member SDSTelescope telescope the telescope’s parameters, by assigning

to it the corresponding values stored in the SDSTelescope object pointed by *ssn.

void SDSBackend::socketError(QAbstractSocket::SocketError se),

reimplemented from virtual void

SDSDevice::socketError(QAbstractSocket::SocketError se)

This slot has been reimplemented for generating log messages in case of errors occurred in the

socket connection managed by member SDSCommThread *commThread. Default messages are

117

implemented if the occurred error is:

0 Connection refused or timed out

1 Connection closed by remote host

2 Host not found

5 Timeout error

7 Network error

-1 Unidentified error

Items in the list are numbered accordingly to the corresponding index in the

QAbstractSocket::socketError enum object.

void SDSBackend::socketState(QAbstractSocket::SocketState ss),

reimplemented from virtual void

SDSDevice::socketState(QAbstractSocket::SocketState ss)

This slot has been implemented for reacting in case of a change of the state for the socket

connection managed by SDSCommThread *commThread. Default actions have been implemented

for the following socket states:

0 Connection closed

3 Connection established

Items in the list are numbered accordingly to the corresponding index in the

QAbstractSocket::socketState enum object. In both the mentioned cases, a log

message is generated for informing about the state change. If the new state is

connection established, the value for member isEnabled is set to true and slot void

SDSStatusButton::setEnabled(bool bl) is called, with the same boolean argument, for

member deviceAct. If instead the new state is connection closed, the same actions are

performed with the boolean value false.

118

Virtual protected slots

virtual void SDSBackend::setBasebandMode()

This slot has to be implemented in SDSBackend subclasses for completing the setup of the

backend managing object, if the data acquisition mode is BASEBAND.

virtual void SDSBackend::setFoldMode()

This slot has to be implemented in SDSBackend subclasses for completing the setup of the

backend managing object, if the data acquisition mode is FOLD, i.e. pulsar folding mode.

virtual void SDSBackend::setSearchMode()

This slot has to be implemented in SDSBackend subclasses for completing the setup of the

backend managing object, if the data acquisition mode is SEARCH, i.e. pulsar search mode.

Signals

void SDSBackend::dataAcquisitionTerminated()

This signal has been designed for being emitted whenever the backend’s data acquisition

terminates, regardless of the reason.

Established signal/slot connections

Signal void SDSValue::newValue(QString), emitted by member SDSEdit Mode

to slot void SDSBackend::setBackendMode(QString)

This connection ensures that the SDSBackend object sets itself accordingly to the selected data

acquisition mode, when the stored value changes for member SDSEdit Mode.

5.6 SDSManager class

5.6.1 Class overview

Class SDSManager class provides the object form managing an observing session. An object of

this class is hence devoted for setting all session data and mode, calling the opportune setup

119

and schedule file, managing the list of observations, starting and stopping the session, and

keeping the session log history. Similarly to SDSAntenna and SDSBackend objects, it inherits

from SDSDevice and a default organization has been implemented for the SDSManager widget.

The adopted layout is displayed in figure 5.5.

Figure 5.5: SDSManager widget’s default layout.

Session data are the project ID, i.e. a code assigned to the project by the telescope’s Time

Allocation Committee, the project name, i.e. the title of the project, and the name(s) of the

observer(s) that are doing the observations. The session mode can be Manual, for a single

observation, or Schedule for an entirely automatized observing session. The SDSValue objects

that manage these data, respectively SDSEdit ProjectCode, SDSEdit ProjectName, SDSEdit

ObserverName and SDSCombo SessionMode, are recognizable at the top of the SDSManager

widget.

The setup file that is loaded by a SDSManager object plays the role of a global setup file,

i.e. in such a file entries are present for loading the configuration for the session, the antenna

and all controlled backends. The syntax for setting a parameter is the following one:

[keyword] = [value(s)] # [Comment]

where [keyword] is the keyword that identifies a parameter, [value(s)] is the string containing

the required value(s), and [Comment] is any comment the observer may insert in the setup file.

The # character is the delimiter between the string containing a setting, at the left, and the

120

comment, at the right. Any line whose first non blank character is # is a commented line.

Keywords for the management parameters are:

1) ProjectID : the code that identifies the project, usually assigned by the

telescope’s time allocation committee;

2) ProjectName : a short title for the project;

3) ObserverName : the name(s) of the observer(s);

4) Schedule : the name of the schedule file, indicated accordingly to the

prescriptions illustrated in §4.5;

5) SessionMode : the session mode, namely Manual if manual interaction is

desidered, or Schedule is a schedule has to be run;

6) ObsLength : the length of the observation, in seconds;

7) ObsStartHour : the UTC start time of the observation;

Entries for a device have the following syntax:

[device identification string] > [keyword] = [value(s)]

where device identification string is ANTENNA for all entries related to the antenna

setup, and is the backend identification string bkstring (see §5.6.2 for details). At the right side

of the > character the allowed syntaxes are:

i) an entry for setting up a device parameter, with the same syntax to be

used in the device configuration file;

ii) Setup = [setup file name] for loading the setup file for the device.

The file name has to be indicated accordingly to the prescriptions

illustrated in §5.2;

iii) the keyword ENABLE for enabling the device;

iv) the keyword DISABLE for disabling the device;

The keyword Source, whose value(s) are set in the SDSAntenna object, can be specified

both with and without prepending the string ANTENNA >, i.e. the following syntaxes are both

valid:

121

ANTENNA > Source = [source parameters]

Source = [source parameters]

In Schedule mode, the schedule is managed by the window for loading and displaying

it, member SDSScheduleManager schedManager, and by the window for organizing the

observation’s list, member SDSObservationList obsList. These window can be opened by

clicking on the View schedule and View obs list buttons respectively. Observations in a

schedule are organized in single lines, i.e. each line in the schedule file contains all necessary

informations for a single observation only. Entries in a schedule line have the same syntax as

in the setup file, and are separated by semicolons. Any entry allowed in a setup file is also

allowed in a schedule line with the syntax requested by the global setup file. Here below is an

example for a schedule line:

Source = [source parameters] ; Setup = [setup file] ; ObsLength = 7200

In the example above it’s also present the entry Setup = [setup file], which indicates

the setup file to be loaded by the SDSManager object. Once the schedule file has been loaded

in SDSScheduleManager schedManager, single observation lines can be selected by clicking on

them with the mouse left button, while a click with the mouse middle button selects the whole

displayed schedule. Any selection is displayed in SDSObservationList obsList and can be

rearranged as indicated in §4.6.

Two SDSEdit objects, SDSEdit ObsLength and SDSEdit ObsStartHour, placed below

SDSEdit SetupFile, allow to set and display the length, expressed in seconds, and the UTC

start time, in the HH:MM:SS format, for the observation. At their right is placed SDSEdit

Status, devoted for displaying the observation status.

Buttons displaying text Observe and Stop obs respectively are SDSDevice members

QPushButton Start and QPushButton Stop. The first one starts the single observation or

the schedule session, accordingly to the selected session mode, while the second interrupts the

current observation and stops the schedule session. Between them button Suspend, member

QPushButton Suspend, is devoted for suspending the schedule mode at the end of the current

observation.

In the lower part of the widget it’s recognisable member SDSLog deviceLog, for managing

the session and all devices log messages.

The last SDSDevice member present in the default template is QLabel MainLabel, located

at the top and displaying text Session manager template.

122

5.6.2 Technical description

Class SDSManager inherits from class SDSDevice, and implements in it all necessary

functionalities for managing an observation and an observing session. This class has been

designed so that the SDSAntenna object that manages the antenna and the SDSBackend objects

that manage the backends are members of this class.

Member SDSAntenna *antenna is the pointer to the object that controls the antenna. Its

fully implementation requires:

1) class SDSAntenna is subclassed, for fully implementing all antenna

functionalities;

2) member *antenna is recasted to the fully implemented antenna subclass;

3) public slot void SDSManager::createAntennaConnections() is called

for establishing the necessary signal/slot connections (see below);

The declaration and fully implementation for the backends objects is a bit involved, because

of the requirement of controlling several backends in parallel. For this reason it has been created

the map < QString , SDSBackend * > backend object, for calling a specific backend by using

a QString text string, and a vector of pointers to SDSBackend objects, vector vback, for

operating on all backends without knowing a priori the text string that identifies the backend

itself. The string that identifies a backend in map < QString , SDSBackend * > backend is

the same string to be used for identifying the backend in the SDSManager setup file. The full

implementation of the control of a given backend requires:

1) class SDSBackend is subclassed, for fully implementing all functionalities

for the backend;

2) an identification string bkstring is selected for the backend;

3) the object backend[bkstring] is recasted to the fully implemented

SDSBackend subclass;

4) slot void vector::push back is called for member vector vback, with

argument backend[bkstring], for placing in the backends vector a

reference to the backend object;

123

Once these steps have been done for all backends to be controlled, public slot void

SDSManager::createBackendsConnections() has to be called for establishing the necessary

signal/slot connections between the SDSManager object and all backends’ objects. Finally, once

the antenna object and all backends’ objects have been recasted as above, public slot void

SDSManager::connectAntennaToBackends() has to be called for establishing the necessary

signal/slot connections between member *antenna and all backends’ objects.

Although SDSAntenna and SDSBackend classes have to be subclassed and fully implemented

for having all necessary functionalities, this fact does not require any subclassing for SDSManager

class. Members for controlling the antenna and the backend have been declared in the header

as public pointers, but not yet instantiated, and this allows their recasting outside the class.

Session informations are also stored in the information object SDSSession session, and

are set by slots void SDSManager::newObserverName(QString nm), void

SDSManager::newProjectCode(QString

nm) and void SDSManager::newProjectName(QString nm) for the observer(s) name(s),

project code and project name respectively. These slots also emit the signal void

SDSManager::sessionParameters(SDSSession *ssn) with argument a reference to the

SDSSession session object.

Slot void SDSManager::readSetupLine(QString sl) has been reimplemented from

virtual void SDSDevice::readSetupLine(QString sl) for analyzing each line in the

SDSManager setup file, accordingly to the syntaxes illustrated in §5.6.1. It also contains a

call to virtual void SDSDevice::readCustomLine(QString sl), so that it becomes easy

the implementation of further parameters in possible SDSManager subclasses.

Slot void SDSManager::readScheduleLine() has been implemented for reading the

observation’s settings in a schedule line, as stored in member QString scheduleLine. This

slot reads, in the given order, the SDSManager setup file, the antenna and backends’

setup files, then the remaining entries. Each entry is then analyzed by calling slot

void SDSManager::readSetupLine(QString sl), since their syntax is the same as in the

SDSManager setup file. The only exception is obviously given by the entry that indicates

SDSManager setup file itself, for which a dedicated implementation has been done.

The core of the SDSManager implementation is in those slots and those signal/slot

connections that allow the coordination between the antenna’s source tracking and the

backend data acquisition. Slot void SDSManager::start() has been reimplemented from

virtual void SDSDevice::start() for starting the observation or the schedule session.

If the selected session mode is Schedule, this slot reads the first line displayed in

124

SDSObservationList obsList, stores it in QString scheduleLine and calls slot void

SDSManager::readScheduleLine(), before calling slot void SDSAntenna::start() for

member SDSAntenna *antenna. The value for member bool obsRequest is set to true. Its

function is to provide a mean of indicating that an observation is starting and, in particular,

that the antenna is slewing to the source coordinates and, once the source tracking starts,

backend’s data acquisition has to be started. This slot is also responsible for checking

whether all observations in the observations list have been done or not. Once the first line

in SDSObservationList obsList is stored in QString scheduleLine, a sanity check is done

for controlling whether the stored string is empty or not. A sequence of only blank characters

is considered an empty string. If such string is empty, a message is generated for informing

about the end of the schedule session and member obsRequest is set to false.

Slot void SDSManager::newAntennaStatus(QString

nas) is called whenever the antenna pointing status changes, thanks to its connection to

signal void SDSValue::newValue(QString) from SDSEdit SDSAntenna::Status. If the new

pointing status is nas = TRACKING and obsRequest = true, enabled backends are started by

calling slot void SDSAntenna::startBackends(), a slot devoted to this specific task, member

bool obsRequest is set to false and member bool isObserving is set to true. This last

member allows to indicate, by means of a boolean variable, that an observation is in progress.

If instead the new pointing status is nas = SLEWING and isObserving = true, which is the

typical situation of a loss of the source tracking, bool isObserving is set to false and backends

are stopped.

Slot void

SDSmanager::stop() has been reimplemented from virtual void SDSDevice::stop() for

interrupting all backends data acquisition, by calling their custom implementation of virtual

void SDSDevice::stop(), and, if in schedule mode, by restoring to the observation list the

schedule line related to the interrupted observation and setting the value for member bool

stopSchedule to true. This last member stores, by means of a boolean variable, the request

of the interruption for the schedule session.

Slot void SDSAntenna::backendHasFinished() is called

whenever a backend has terminated its data acquisition, thanks to its connection to signal

void SDSBackend::dataAcquisitionTerminated() from all implemented backends. This

connection is established by calling slot void SDSManager::createBackendsConnections().

If there still is at least one backend whose data acquisition is in progress, nothing happens.

If instead all enabled backends are idle, a message is generated for informing about the

125

completion of the observation. Moreover if the session mode is Schedule, if stopSchedule

= true a second message is generated for informing about the suspension of the schedule, if

instead stopSchedule = false slot void SDSManager::start() is called for starting the next

planned observation.

From the point of view of the SDSManager widget’s graphic properties, slot void

SDSManager::setChildrenStyle(QFont cf,QPalette cp) has been reimplemented from

virtual void SDSDevice::setChildrenStyle(QFont cf,QPalette cp) for setting the text

font to QFont cf and the color palette to QPalette cp for members SDSScheduleManager

schedManager and SDSObservationList obsList.

All SDSDevice members and virtual function not mentioned so far do not find any

implementation or call in this class. Not strictly necessary widget - like members have been

hidden, member SDSCommThread*commThread has not been recasted and all slots that interact

with it are not called anywhere, and not yet cited virtual functions have not been implemented.

Inheritance

Inherits from: SDSDevice

Public members

SDSAntenna *antenna

This member is a pointer to the SDSAntenna object devoted to manage the antenna. Since

class SDSAntenna is not fully implemented for managing a given antenna, the following steps

are required for SDSAntenna *antenna to be managed by a SDSManager object:

1) class SDSAntenna is subclassed, for fully implementing all antenna

functionalities;

2) member *antenna is recasted to the fully implemented antenna subclass;

3) public slot void SDSManager::createAntennaConnections() is called

for establishing the necessary signal/slot connections (see below);

Moreover, once all backends have been

126

fully implemented, slot void SDSManager::connectAntennaToBackends() has to be called

for establishing all necessary signal/slot connections between SDSAntenna *antenna and all

fully implemented SDSBackend objects.

map < QString , SDSBackend * > backend

This object is a map of all fully implemented SDSBackend objects versus the strings that

identifies each of them, and represents the inclusion as members of all SDSBackend objects in

SDSManager class. The final implementation of all backend’s objects require the following steps:

1) class SDSBackend is subclassed, for fully implementing all functionalities

for the backend;

2) an identification string bkstring is selected for the backend;

3) the object backend[bkstring] is recasted to the fully implemented

SDSBackend subclass;

4) slot void vector::push back is called for member vector vback, with

argument backend[bkstring], for placing in the backends vector a

reference to the backend object;

5) slot void SDSManager::createBackendsConnections() is called for

establishing the necessary signal/slot connections to the SDSManager

object;

Steps 1) to 4) have to be done for each single backend to be controlled, while step 5) has to

be done after the implementation of all backends. Moreover, once the antenna object has been

fully implemented too, public slot void SDSManager::connectAntennaToBackends() has to

be called for establishing the necessary signal/slot connections between member *antenna and

all backends’ objects.

bool isObserving

This member stores, by means of a boolean variable, the overall telescope situation with respect

to the progress observation. isObserving = true indicates that the antenna is tracking the

source and all required backends are performing their data acquisition, while isObserving =

false indicates any situation but the above mentioned one.

127

SDSEdit ObserverName

This member is the SDSEdit object for setting and displaying the observer(s) name(s). Once

its displayed value changes, this information is propagated to all SDSBackend objects.

SDSEdit ObsLength

This member is the SDSEdit object for setting and displaying the observation length, expressed

in seconds.

SDSObservationList obsList

This member is the SDSObservationList object that manages the observation list in Schedule

mode.

QPushButton obsListBt

This member is the button devoted to opening the window that hosts SDSObservationList

obsList.

bool obsRequest

This member stores, by means of a boolean variable, the overall telescope situation with respect

to the request of an observation: obsRequest = true indicates that the telescope is doing all

necessary tasks to set itself up, including its slewing to the source coordinates, before the data

acquisition starts.

SDSEdit ObsStartHour

This member is the SDSEdit object for setting and displaying the observation UTC start time,

in the HH:MM:SS format.

SDSEdit ProjectCode

This member is the SDSEdit object for setting and displaying the project code, as assigned by

the telescope’s Time Allocation Comittee.

SDSEdit ProjectName

This member is the SDSEdit object for setting and displaying the project name or short

description.

128

SDSSession session

This member is the SDSSession object for storing all session’s informations.

SDSCombo SessionMode

This member is the SDSCombo for selecting the session mode, namely Manual for a manually

controlled observation, and Schedule for a schedule managed session.

SDSScheduleManager schedManager

This member is the SDSScheduleManager object devoted for managing the schedule file.

QPushButton schedManagerBt

This member is button devoted to opening the window that hosts SDSScheduleManager

schedManager.

bool stopSchedule

This member indicates, by means of a boolean variable, the suspension of the running schedule.

stopSchedule = true means that such suspension has been requested, stopSchedule = false

the opposite case.

QPushButton Suspend

This member is the button devoted for calling the suspension of the running schedule at the

end of the running observation.

vector <SDSBackend *> vback

This member is a vector object, whose elements are pointers to SDSBackend objects. It allows

to perform tasks on all backends objects without knowing their identification string.

Protected members

QString scheduleLine

This member stores, in Schedule mode, the schedule line that contains the informations about

the observation in progress.

129

Public slots

void SDSManager::backendHasFinished()

This slot is called when a backend has terminated its data acquisition. It checks whether all

other enabled backends have also terminated their data acquisition for determining whether

the observation can be considered completed and, in Schedule session mode, starting with the

next one.

void SDSManager::connectAntennaToBackends()

This slot establishes all necessary signal/slot connections between SDSAntenna *antenna and

all SDSBackend objects, namely:

1) Signal void SDSAntenna::sourceParameters(SDSSource *) from

member SDSAntenna *antenna, to slot

void SDSBackend::setSource(SDSSource *) for all declared elements

of vector <SDSBackend *> vback;

2) Signal void SDSAntenna::receiverParameters(SDSReceiver *) from

member SDSAntenna *antenna, to

slot void SDSBackend::setReceiver(SDSReceiver *) for all declared

elements of vector <SDSBackend *> vback.

This slot has to be called after member SDSAntenna *antenna and all declared elements of

vector <SDSBackend *> vback have been recasted to the fully implemented subclasses of

their base class.

void SDSManager::createAntennaConnections()

This slot establishes all necessary signal/slot connections between SDSAntenna *antenna and

the SDSManager object, namely:

1) Signal void SDSValue::newValue(QString) from member SDSEdit

SDSAntenna::Status, to slot void

SDSManager::newAntennaStatus(QString)

This slot has to be called after member SDSAntenna *antenna has been recasted to the fully

implemented subclass of SDSAntenna.

130

void SDSManager::createBackendsConnections()

This slot establishes all necessary signal/slot connections between the SDSManager object and

all SDSBackend objects, namely:

1) Signal void SDSBackend::dataAcquisitionTerminated() from all

declared elements of vector <SDSBackend *> vback, to slot void

SDSAntenna::backendHasFinished()

This slot has to be called after all declared elements of vector <SDSBackend *> vback have

been recasted to the fully implemented subclasses of their base class.

void SDSManager::newAntennaStatus(QString nas)

This slot triggers the opportune actions whenever the antenna pointing status changes,

accordingly to the overall situation.

void SDSManager::newObserverName(QString nm)

This slot sets to nm the observer(s) name(s) in member SDSSession session, and emits the

signal void SDSManager::emit sessionParameters(&session) for passing this information

to other objects.

void SDSManager::newProjectCode(QString nm)

This slot sets to nm the project’s code in member SDSSession session, and emits the

signal void SDSManager::emit sessionParameters(&session) for passing this information

to other objects.

void SDSManager::newProjectName(QString nm)

This slot sets to nm the project’s name in member SDSSession session, and emits the

signal void SDSManager::emit sessionParameters(&session) for passing this information

to other objects.

void SDSManager::readScheduleLine()

This slot reads the schedule line stored in member QString scheduleLine and accordingly

sets all observation’s parameters.

131

void SDSManager::readSetupLine(QString sl)

This slot analyzes the line sl of a setup file and accordingly calls the opportune slot for

performing the indicated setting.

void SDSManager::setChildrenStyle(QFont cf,QPalette cp)

This slot sets to QFont cf and to QPalette cp respectively the text font and the color palette

for members SDSObservationList obsList and SDSScheduleManager schedManager.

void SDSManager::start()

reimplemented from virtual void SDSDevice::start()

This slot starts either a single observation or a schedule session, accordingly to the session mode

selected in member SDSCombo SessionMode.

void SDSManager::startBackends()

This slot triggers the data acquisition for all enabled backends, after having set them in them

the informations about the session and the observation’s length and UTC start time.

void SDSManager::stop()

reimplemented from virtual void SDSDevice::stop()

This slot stops the data acquisition for all backends that are enabled and still acquiring data

and, if the session mode is Schedule, stops the session.

void SDSManager::suspend()

This slot sets to true the value for member bool stopSchedule, so that the running schedule

session is stopped at the end of the observation in progress.

Signals

void SDSManager::sessionParameters(SDSSession *)

This signal passes a reference to an SDSSession object for passing to other objects all

informations about the observing session.

132

Established signal/slot connections

Signal void SDSValue::newValue(QString), emitted by member SDSEdit ObserverName

to slot void SDSManager::newObserverName(QString)

This connection ensures that slot void SDSManager::newObserverName(QString) is called

whenever the information stored in member SDSEdit ObserverName is updated.

Signal void SDSValue::newValue(QString), emitted by member SDSEdit ProjectCode

to slot void SDSManager::newProjectCode(QString)

This connection ensures that slot void SDSManager::newProjectCode(QString) is called

whenever the information stored in member SDSEdit ProjectCode is updated.

Signal void SDSValue::newValue(QString), emitted by member SDSEdit ProjectName

to slot void SDSManager::newProjectName(QString)

This connection ensures that slot void SDSManager::newProjectName(QString) is called

whenever the information stored in member SDSEdit ProjectName is updated.

Signal void QPushButton::clicked(), emitted by member QPushButton Suspend

to slot void SDSManager::suspend()

This connection ensures that slot void SDSManager::suspend() is called whenever button

QPushButton Suspend is clicked.

Signal void QPushButton::clicked(), emitted by member QPushButton obsListBt

to slot void QWidget::show() for member SDSObservationList obsList

This connection ensures that the window hosting member SDSObservationList obsList is

opened whenever button QPushButton obsListBt is clicked.

Signal void QPushButton::clicked(), emitted by member QPushButton schedManagerBt

to slot void QWidget::show() for member SDSScheduleManager schedManager

This connection ensures that the window hosting member SDSScheduleManager schedManager

is opened whenever button QPushButton schedManagerBt is clicked.

Signal void SDSScheduleManager::obsLineSelected(QString), emitted by member

SDSScheduleManager schedManager

133

to slot void SDSObservationList::addObsLine(QString) for member SDSObservationList

obsList

This connection ensures that slot void SDSObservationList::addObsLine(QString) is

called whenever a selection is made in the text displayed in member SDSScheduleManager

schedManager.

Signal/slot connection to be established

Signal void SDSBackend::dataAcquisitionTerminated(), emitted by all declared elements

of vector <SDSBackend *> vback,

to slot void SDSAntenna::backendHasFinished()

established by calling slot void SDSManager::createBackendsConnections()

This connection has to be established for allowing the SDSManager object to determine whether

all active backends have terminated their data acquisition hence establishing whether the

observation can be considered completed.

Signal void SDSValue::newValue(QString), emitted by member SDSEdit

SDSAntenna::Status, to slot void SDSManager::newAntennaStatus(QString),

established by calling slot void SDSManager::createAntennaConnections()

This connection has to be established for allowing the SDSManager object the taking of all

opportune decisions in correspondence of a change in the antenna pointing status.

Signal void SDSAntenna::sourceParameters(SDSSource *), emitted by member

SDSAntenna *antenna, to slot void SDSBackend::setSource(SDSSource *) for all declared

elements of vector vector <SDSBackend *> vback,

established by calling slot void SDSManager::connectAntennaToBackends()

This connection has to be established for allowing the SDSAntenna object to pass to all backends

the informations about the source to be observed.

134

Signal void SDSAntenna::receiverParameters(SDSReceiver *), emitted by member

SDSAntenna *antenna

to slot void SDSBackend::setReceiver(SDSReceiver *) for all declared elements of vector

<SDSBackend *> vback,

established by calling slot void SDSManager::connectAntennaToBackends()

This connection has to be established for allowing the SDSAntenna object to pass to all backends

the informations about the selected receiver.

135

