
Internal Report n. 58 - Bachetti et al., SRT Single Dish Tools documentation

 

� of �1 30

SRT Single-Dish Tools documentation

Matteo	Bachetti,  
Alberto	Pellizzoni,	Elise	Egron,	Simona	
Righini,	Noemi	Iacolina,	Alessio	Trois	

Report n.58, released: 04/08/2016

Reviewer: Maura Pilia

INTERNAL REPORT

Osservatorio
Astronomico
di Cagliari

Internal Report n. 58 - Bachetti et al., SRT Single Dish Tools documentation

Table	of	contents	

Introduction	 3	

Roadmap	 3	

Installation	 4	

Tutorial	 5	

Command	line	interface	 11	

API	documentation	 14

� of �2 30

Internal Report n. 58 - Bachetti et al., SRT Single Dish Tools documentation

Introduc1on	

The	Sardinia	Radio	Telescope	Single	Dish	Tools	(SDT)	are	a	set	of	Python	tools	designed	
for	 the	 quicklook	 and	 analysis	 of	 single-dish	 radio	 data,	 starting	 from	 the	 backends	
present	 at	 the	 Sardinia	 Radio	 Telescope.	 They	 are	 composed	 of	 a	 Python	 (2.7,	 3.4+)	
library	for	developers	and	a	set	of	command-line	scripts	to	soften	the	learning	curve	for	
new	users.	

The	Python	library	is	written	following	the	modern	coding	standards	documented	in	the	
Astropy	Coding	Guidelines.	Automatic	tests	cover	a	signiSicant	fraction	of	the	code,	and	
are	 launched	each	time	a	commit	 is	pushed	to	the	(private,	 for	 the	time	being)	Github	
repository.	 The	 Continuous	 Integration	 service	 Travis	 CI	 is	 used	 for	 that.	 It	 will	 be	
released	to	the	public	as	an	Open	Source	library	once	a	number	of	items	in	the	roadmap	
are	 accomplished	 (see	 below),	 but	 it	 is	 already	 available	 upon	 request.	 The	 current	
version	is	0.2-dev,	indicating	a	pre-release	of	the	0.2	version.	

In	 the	 current	 implementation,	 spectroscopic	 and	 total-power	 on-the-Sly	 scans	 are	
supported,	both	as	part	of	standalone	Slux	measurements	through	“cross	scans”	and	as	
parts	of	a	map.	Maps	are	formed	through	a	series	of	scans	that	swipe	the	source	region.	

Roadmap	
• v.0.1:	Simple	map	creation,	draft	calibrated	Sluxes	
• v.0.2:	Stable	calibrated	Sluxes,	use	of	multibeam	in	the	K	band	
• v.0.3:	Stabilization	of	interactive	interface	
• v.0.4:	Full	support	of	general	coordinate	systems,	including	Galactic	
• v.0.5:	Improved	RFI	support,	using	simple	techniques	of	machine	learning	
• v.1.0:	Compatibility	with	ALMA	Sile	format;	code	release.	

� of �3 30

Figure	1.	On-the-fly	maps	vs	cross	scan	strategies	for	single	dish	observations.	The	
first	is	able	to	produce	images,	the	second	is	used	to	obtain	quick	flux	measurements	
of	point-like	sources.

https://github.com/matteobachetti/srt-single-dish-tools
http://www.travis-ci.com

Internal Report n. 58 - Bachetti et al., SRT Single Dish Tools documentation

Installa1on	

Anaconda	and	virtual	environment	(recommended	but	op1onal)	

We	strongly	 suggest	 to	 install	 the	Anaconda	Python	distribution.	Once	 the	 installation	
has	Sinished,	you	should	have	a	working	conda	command	in	your	shell.	First	of	all,	create	
a	new	environment:	

$	conda	create	-n	py35	python=3.5	

load	the	new	environment:	

$	source	activate	py35	

and	install	the	dependencies:	

(py35)	$	conda	install	matplotlib	h5py	astropy	scipy	numpy  
(py35)	$	pip	install	statsmodels	#	Optional	

Cloning	and	installa1on	

Clone	the	repository 	(you	will	need	to	be	a	registered	user	of	the	code):	1

(py35)	$	cd	/my/software/directory/ 
(py35)	$	git	clone	https://username@bitbucket.org/mbachett/srt-single-
dish-tools.git	

or	if	you	have	deployed	your	SSH	key	to	Bitbucket:	

(py35)	$	git	clone	git@bitbucket.org:mbachett/srt-single-dish-tools.git	

Then:	

(py35)	$	cd	srt-single-dish-tools 
(py35)	$	python	setup.py	install 
(py35)	$	python	setup.py	test	

That’s	 it.	 After	 installation	 has	 ended	 and	 tests	 have	 passed,	 you	 can	 verify	 that	 the	
software	is	installed	correctly	by	executing:	

(py35)	$	SDTlcurve	-h	

If	the	help	message	appears,	you’re	done!	

Upda1ng	

To	update	the	code,	simply	run	git	pull	and	reinstall:	

(py35)	$	git	pull 
(py35)	$	python	setup.py	install 

 A mirror on GitHub is also available, and will eventually become the main repository. For 1

the time being, it is used only to trigger the automatic tests on Travis CI.

� of �4 30

https://www.continuum.io/downloads

Internal Report n. 58 - Bachetti et al., SRT Single Dish Tools documentation

Tutorial	

In	 this	 tutorial,	 we	 will	 see	 how	 to	 obtain	 calibrated	 images	 from	 a	 set	 of	 on-the-Sly	
(OTF)	 scans	 done	 with	 the	 SRT.	 Data	 are	 taken	 with	 the	 SARDARA	 ROACH2-based	
backend,	with	a	bandwidth	of	1024	MHz	and	1024	channels.	

In	 this	 tutorial	we	will	 Sirst	 learn	how	the	software	does	a	semi-automatic	cleaning	of	
the	 data	 from	 radio-frequency	 interferences	 (RFI),	 and	 how	 to	 tweak	 the	 relevant	
parameters	to	do	the	cleaning	properly.	Then,	we	will	generate	rough	 images	with	the	
default	baseline	subtraction	algorithms.	Afterwards,	we	will	load	a	set	of	calibrators	to	
perform	 the	 conversion	 from	 signal	 level	 to	 Janskys/pixel.	 Finally,	 we	 will	 apply	 the	
calibration	to	the	previously	generated	images.	

Inspect	the	observa1on	

During	a	night	of	observations,	we	will	in	general	observe	a	number	of	calibrators	and	
sources,	in	random	order.	Our	observation	will	be	split	into	a	series	of	directories:	

(py35)	$	ls 
2016-05-04-220022_Src1/ 
2016-05-04-223001_Src1/ 
2016-05-04-230001_Cal1/ 
2016-05-04-230200_Cal2/ 
2016-05-04-230432_Src1/ 
2016-05-04-233523_Src1/ 
(....)	

Some	of	these	observations	might	have	been	done	in	different	bands,	or	using	different	
receivers,	 and	 you	 might	 have	 lost	 the	 list	 of	 observations	 (or	 the	 user	 was	 not	 the	
observer).	The	script	SDTinspector	is	there	to	help,	dividing	the	observations	in	groups	
based	on	observing	time,	backend,	receiver,	etc.:	

(py35)	$	SDTinspect	*/ 
Group	0,	Backend	=	ROACH2,	Receiver	=	CCB 

Src1,	observation	0 
 
Source	observations: 
2016-05-04-220022_Src1/ 
2016-05-04-223001_Src1/ 
2016-05-04-230432_Src1/ 
 
Calibrator	observations: 
2016-05-04-230001_Cal1/ 
2016-05-04-230200_Cal2/ 
 
Group	1,	Backend	=	ROACH2,	Receiver	=	KKG 

Src1,	observation	1 
 
Source	observations: 
2016-05-04-233523_Src1/ 
(.....) 

� of �5 30

Internal Report n. 58 - Bachetti et al., SRT Single Dish Tools documentation

 
Calibrator	observations: 
(.....)	

With	the	-d	option,	the	script	will	also	dump	automatically	a	set	of	conSig	Siles	ready	for	
the	next	step	in	the	analysis:	

(py35)	$	SDTinspect	-d	*/ 
Group	0,	Backend	=	ROACH2,	Receiver	=	CCB 
(.....) 
(py35)	$	ls	-alrt 

� of �6 30

Figure	2.	Output	of	the	automatic	filtering	procedure	for	an	OTF	scan	of	a	calibrator.	
Channels	with	an	rms	that	is	a	multiple	of	the	mean	standard	deviation	of	the	scan	
(factor	encoded	in	the	noise_threshold	key	in	the	config	file)	are	automatically	
filtered	out.	See	bottom	panel,	where	the	cyan	curved	line	is	the	running	threshold	to	
select	noisy	channels,	and	black	lines	in	the	middle-top	and	top	panels.	Optionally	the	
user	can	choose	the	frequency	interval	(blue	vertical	lines).	The	rms	of	the	dynamical	
spectrum	before	and	after	the	cleaning	is	shown	in	the	two	middle	panels,	and	the	
effect	of	the	cleaning	on	the	scan	is	shown	in	the	two	right	panels.

Internal Report n. 58 - Bachetti et al., SRT Single Dish Tools documentation

CCB_ROACH_Src1_Obs0.ini 
KKG_ROACH_Src1_Obs1.ini	

Modify	config	files	

If	 you	did	 not	 pre-generate	 conSig	 Siles	with	 the	procedure	 above,	 you	 can	 generate	 a	
boilerplate	conSig	Sile	with:	

(py35)	$	SDTlcurve	--sample-config 
(py35)	$	ls 
(...) 
sample_config_file.ini	

In	the	following,	we	will	use	the	conSig	Siles	generated	by	SDTinspect,	but	it	is	very	easy	
to	adapt	to	the	case	of	a	custom-modiSied	boilerplate.	

ConSig	 Siles	 have	 this	 overall	 structure	 (slight	 changes	 might	 occur,	 like	 equals	 signs	
being	changed	to	semicolons):	

(py35)	$	cat	CCB_ROACH_Src1_Obs0.ini 
[local] 
workdir	=	. 
datadir	=	. 
 
[analysis] 
projection	=	ARC 
interpolation	=	spline 
list_of_directories	= 
				2016-05-04-220022_Src1/ 
				2016-05-04-223001_Src1/ 
				2016-05-04-230432_Src1/ 
calibrator_directories	= 
				2016-05-04-230001_Cal1/ 
				2016-05-04-230200_Cal2/ 
noise_threshold	=	5 
pixel_size	=	1 
goodchans	=	

You	will	likely	not	change	the	kind	of	interpolation	or	the	projection	in	the	plane	of	the	
sky	 (but	 if	 instead	of	ARC	 you	want	 something	different,	 all	 projections	 in	 this	 list	 are	
supported)	

pixel_size	is	by	default	1	arcminute.	You	might	want	to	change	this	depending	on	the	
density	of	scans	and	the	beam	size	at	the	observing	frequency.	Usually,	1/3	of	the	beam	
size	 is	 ok	 for	 dense	 OTF	 scan	 campaigns,	 while	 a	 larger	 value	 is	 better	 for	 sparse	
observations. 
goodchans	 is	 a	 list	 of	 channels	 that	 can	 be	 excluded	 from	 automatic	 Siltering	 (for	
example,	because	they	might	contain	an	important	spectral	line.)	

Also,	 you	 might	 know	 already	 that	 some	 observations	 were	 bad.	 In	 this	 case,	 it’s	
sufSicient	to	take	them	out	of	the	list	above.	

� of �7 30

http://docs.astropy.org/en/stable/wcs/%23supported-projections

Internal Report n. 58 - Bachetti et al., SRT Single Dish Tools documentation

Preprocess	the	files	

This	step	is	optional,	because	it	can	be	merged	with	image	production.	However,	for	the	
sake	of	this	tutorial	we	will	proceed	in	this	way	for	simplicity.	

The	easiest	way	to	preprocess	an	observation	is	to	call	SDTpreprocess	on	a	conSig	Sile.	
The	script	will	load	all	Siles,	one	by	one,	and	do	the	following	steps:	

1. If	 the	backend	 is	spectroscopic,	 load	each	scan	and	Silter	out	all	channels	 that	are	
more	 noisy	 than	 a	 given	 value	 of	 rms	 during	 the	 scan,	 then	merge	 into	 a	 single	
channel.	 As	 an	 option	 (recommended),	 the	 user	 can	 specify	 a	 frequency	 interval	
that	will	be	merged,	otherwise	the	full	frequency	interval	is	taken:	for	this,	one	can	
use	the	option	--splat	<minf:maxf>	where	minf,	mmaxf	are	in	MHz	referred	to	the	
minimum	frequency	of	the	interval.	E.g.	if	our	local	oscillator	is	at	6900	MHz	and	we	
want	to	cut	 from	7000	to	7500,	minf	and	mmaxf	will	be	100	and	600	respectively.	
This	process	produces	plots	like	Figure	2.	

(py35)	$	SDTpreprocess	-c	CCB_TP_Src1_Obs0.ini	—splat	100:600	

2. The	single	channels	that	are	produced	at	step	1,	or	alternatively	the	single	channels	
of	 a	 non-spectroscopic	 backend,	will	 now	be	processed	by	 a	 baseline	 subtraction	
routine.	This	routine,	by	default,	applies	an	Asymmetric	Least	Squares	Smoothing	
(Eilers	and	Boelens	2005)	to	Sind	the	rough	alignment	of	the	scan,	and	then	makes	a	
more	precise	Sit.	This	procedure	is	very	fast	and	aligns	the	vast	majority	of	scans	in	
a	 fraction	of	 seconds.	For	more	complicated	scans,	 an	 interactive	 interface	 is	also	
available	(through	the	--interactive	option).	

3. The	results	of	 the	 Sirst	points	are	saved	as	HDF5	 Siles	 in	 the	same	directory	as	 the	
original	fits	Siles.	This	makes	it	much	faster	to	reload	the	scans	for	further	use.	If	
the	user	wants	to	reprocess	the	Siles	from	scratch,	he/she	needs	to	delete	these	Siles	
Sirst.	

Let’s	produce	some	images	now!	

Finally,	 let	 us	 execute	 the	map	 calculation.	 If	 data	were	 taken	with	 a	Total	 Power-like	
instrument	and	they	do	not	contain	spectral	information,	it	is	sufSicient	to	run:	

(py35)	$	SDTimage	-c	CCB_TP_Src1_Obs0.ini	

where	CCB_TP_Src1_Obs0.ini	 should	be	substituted	with	 the	wanted	conSig	 Sile.	This	 is	
also	valid	for	spectroscopic	scans	that	have	already	been	preprocessed:	

(py35)	$	SDTimage	-c	CCB_ROACH_Src1_Obs0.ini	

Otherwise,	 if	 preprocessing	 were	 not	 executed	 before,	 specify	 the	 minimum	 and	
maximum	 frequency	 to	 select	 in	 the	 spectrum,	 with	 the	 --splat	 option	 (same	 as	
before):	

(py35)	$	SDTimage	-c	CCB_ROACH_Src1_Obs0.ini	--splat	<freqmin>:<freqmax>	

The	above	command	will:	

• Run	through	all	the	scans	in	the	directories	speciSied	in	the	conSig	Sile	

� of �8 30

https://zanran_storage.s3.amazonaws.com/www.science.uva.nl/ContentPages/443199618.pdf

Internal Report n. 58 - Bachetti et al., SRT Single Dish Tools documentation

• Clean	 them	 up	 if	 not	 already	 done	 in	 a	 previous	 step,	 in	 the	 same	 way	 of	
SDTpreprocess	

• Create	a	 single	 frequency	channel	per	polarization	by	summing	 the	contributions	
between	freqmin	 and	freqmax,	 and	discarding	 the	remaining	 frequency	channels,	
again	if	not	already	done	in	a	previous	step;	

• Create	 the	 map	 in	 FITS	 format	 readable	 by	 DS9.	 The	 FITS	 extensions	 IMGCH0,	
IMGCH1,	 etc.	 contain	 an	 image	 for	 each	 polarization	 channel.	 The	 extensions	
IMGCH<no>-STD	will	contain	the	error	images	corresponding	to	IMGH<no>.	

The	automatic	RFI	removal	procedure	might	have	missed	some	problematic	scans.	The	
map	might	have,	therefore,	some	residual	“stripes”	due	to	bad	scans	or	wrong	baseline	
subtraction.	

The	Sirst	thing	to	do,	in	these	cases,	is	to	go	and	look	at	the	scans	(by	going	through	the	
PDF	Siles	produced	by	the	calibration	process	in	each	subdirectory)	and	check	that	the	
noise	threshold	is	appropriate	for	the	level	of	noise	found	in	scans.	If	it	is	not,	as	is	often	
the	case,	it	is	sufSicient	to	re-run	SDTpreprocess	with	the	noise	threshold	changed	in	the	
conSig	Sile	to	get	a	better	cleaning	of	the	data.	

� of �9 30

Figure	3.	Map	produced	by	SDTimage

Internal Report n. 58 - Bachetti et al., SRT Single Dish Tools documentation

But	SDTimage	has	an	additional	option	to	align	the	scans	(option	-g).	 It’s	called	global	
baseline	subtraction.	This	procedure	makes	a	global	Sit	of	all	scans	in	an	image,	and	tries	
to	 Sind	 the	 alignment	 of	 each	 scan	 that	 minimizes	 the	 total	 rms	 of	 the	 image.	 This	
procedure	 is	 only	 valid	 if	 the	 region	 that	 is	 Sit	 is	 consistent	with	having	 zero	 average.	
This	is,	of	course,	not	valid	if	the	source	is	strong.	In	this	case,	together	with	the	global	
Sit	option,	we	need	to	also	specify	a	set	of	regions	to	neglect.	This	 is	done	through	the	
option	-e	followed	by	three	numbers:	X,	Y	and	radius,	in	image	coordinates	(SAOimage	
ds9	 or	 other	 imaging	 programs	 can	 create	 regions	 with	 these	 coordinates,	 one	 just	
needs	to	copy	the	numbers.	A	full	usage	of	DS9-like	regions	is	envisaged).	

In	 summary,	 to	 use	 the	 global	 Sitting	 and	 discard	 the	 region	 centered	 at	 coordinates	
x,y=30,33	with	radius	10	pixels,	run	

(py35)	$	SDTimage	-g	-e	30	33	10	(…	+	usual	options)	

Now,	have	fun	with	DS9	(Figure	3)!	

Calibra1on	of	images	

To	calibrate	the	images,	one	needs	to	call	SDTcal	with	the	same	conSig	Siles	used	for	the	
images	 if	 they	 were	 produced	 with	 SDTinspect.	 Otherwise,	 one	 can	 construct	 an	
alternative	conSig	Sile	with	

(py35)	$	SDTcal		--sample-config	

and	 modify	 the	 conSiguration	 Sile	 adding	 calibrator	 directories	 below	
calibrator_directories:	

calibrator_directories	: 
			datestring1-3C295/ 
			datestring2-3C295/	

Then,	call	again	SDTcal	with	the	--splat	option,	using	the	same	frequency	range	used	
for	the	sources:	

(py35)	$	SDTcal	-c	CCB_ROACH_Src1_Obs0.ini	--splat	<freqmin>:<freqmax>	\  
-o	calibration.hdf5	

Finally,	call	SDTimage	with	the	--calibrate	option,	as	follows:	

(py35)	$	SDTimage	--calibrate	calibration.hdf5	-c		\	
CCB_ROACH_Src1_Obs0.ini		--splat	<freqmin>:<freqmax>	--interactive	

...	 and	 that’s	 it!	 The	 image	 values	 will	 be	 expressed	 in	 Jy	 instead	 of	 counts,	 so	 that	
applying	 a	 region	with	 DS9	 and	 calculating	 the	 total	 Slux	 inside	 the	 given	 region	will	
return	the	actual	total	Slux	contained	in	the	region.	

� of �10 30

Internal Report n. 58 - Bachetti et al., SRT Single Dish Tools documentation

Command	line	interface	

Here	follows	a	schematic	view	on	the	options	for	the	command	line	scripts.	

SDTcal	

usage:	SDTcal	[-h]	[--sample-config]	[--nofilt]	[-c	CONFIG]	[--splat	
SPLAT] 
														[-o	OUTPUT]	[--show] 
														[file] 
 
Load	a	series	of	scans	from	a	config	file	and	produce	a	map.  
 
positional	arguments: 
		file																		Input	calibration	file  
 
optional	arguments: 
		-h,	--help												show	this	help	message	and	exit  
		--sample-config							Produce	sample	config	file  
		--nofilt														Do	not	filter	noisy	channels  
		-c	CONFIG,	--config	CONFIG 
																								Config	file 
		--splat	SPLAT									Spectral	scans	will	be	scrunched	into	a	single	
channel 
																								containing	data	in	the	given	frequency	range,	
starting 
																								from	the	frequency	of	the	first	bin.	E.g.	'0:1000'  
																								indicates	'from	the	first	bin	of	the	spectrum	up	
to 
																								1000	MHz	above'.	':'	or	'all'	for	all	the	
channels. 
		-o	OUTPUT,	--output	OUTPUT 
																								Output	file	containing	the	calibration  
		--show																Show	calibration	summary	

SDTimage	

usage:	SDTimage	[-h]	[--sample-config]	[-c	CONFIG]	[--refilt]	[--sub]  
																[--interactive]	[--calibrate	CALIBRATE]	[--nofilt]	[-g]  
																[-e	EXCLUDE	[EXCLUDE	...]]	[--chans	CHANS]	[-o	OUTFILE]  
																[--splat	SPLAT] 
																[file] 
 
Load	a	series	of	scans	from	a	config	file	and	produce	a	map.  
 
positional	arguments: 
		file																		Load	intermediate	scanset	from	this	file	
(optional) 
 
optional	arguments: 
		-h,	--help												show	this	help	message	and	exit  

� of �11 30

Internal Report n. 58 - Bachetti et al., SRT Single Dish Tools documentation

		--sample-config							Produce	sample	config	file  
		-c	CONFIG,	--config	CONFIG 
																								Config	file 
		--refilt														Re-run	the	scan	filtering  
		--sub																	Subtract	the	baseline	from	single	scans  
		--interactive									Open	the	interactive	display  
		--calibrate	CALIBRATE 
																								Calibration	file 
		--nofilt														Do	not	filter	noisy	channels  
		-g,	--global-fit						Perform	global	fitting	of	baseline  
		-e	EXCLUDE	[EXCLUDE	...],	--exclude	EXCLUDE	[EXCLUDE	...]  
																								Exclude	region	from	global	fitting	of	baseline.	  
																								The	region	is	indicated	by	three	numbers:	X,	Y	  
																								and	radius.	e.g.	-e	30	31	10	

		--chans	CHANS									Comma-separated	channels	to	include	in	global  
																								fitting 
																								(Ch0,	Ch1,	...) 
		-o	OUTFILE,	--outfile	OUTFILE 
																								Save	intermediate	scanset	to	this	file.  
		--splat	SPLAT									Spectral	scans	will	be	scrunched	into	a	single	
channel 
																								containing	data	in	the	given	frequency	range,	
starting 
																								from	the	frequency	of	the	first	bin.	E.g.	'0:1000'  
																								indicates	'from	the	first	bin	of	the	spectrum	up	
to 
																								1000	MHz	above'.	':'	or	'all'	for	all	the	
channels.	

SDTinspect	

usage:	SDTinspect	[-h]	[-g	GROUP_BY	[GROUP_BY	...]]	[-d]  
																		directories	[directories	...]  
 
From	a	given	list	of	directories,	read	the	relevant	information	and	link  
observations	to	calibrators.	A	single	file	is	read	for	each	directory.  
 
positional	arguments: 
		directories											Directories	to	inspect  
 
optional	arguments: 
		-h,	--help												show	this	help	message	and	exit  
		-g	GROUP_BY	[GROUP_BY	...],	--group-by	GROUP_BY	[GROUP_BY	...]  
		-d,	--dump-config-files	

SDTlcurve	

usage:	SDTlcurve	[-h]	[--sample-config]	[-c	CONFIG]  
																	[--pickle-file	PICKLE_FILE]	[--splat	SPLAT]	[--refilt]  

� of �12 30

Internal Report n. 58 - Bachetti et al., SRT Single Dish Tools documentation

 
Load	a	series	of	cross	scans	from	a	config	file	and	produce	a	calibrated	
light	curve. 
 
optional	arguments: 
		-h,	--help												show	this	help	message	and	exit  
		--sample-config							Produce	sample	config	file  
		-c	CONFIG,	--config	CONFIG 
																								Config	file 
		--pickle-file	PICKLE_FILE 
																								Name	for	the	intermediate	pickle	file  
		--splat	SPLAT									Spectral	scans	will	be	scrunched	into	a	single	
channel 
																								containing	data	in	the	given	frequency	range,	
starting 
																								from	the	frequency	of	the	first	bin.	E.g.	'0:1000'  
																								indicates	'from	the	first	bin	of	the	spectrum	up	
to 
																								1000	MHz	above'.	':'	or	'all'	for	all	the	
channels. 
		--refilt														Re-run	the	scan	filtering	

SDTpreprocess	

usage:	SDTpreprocess	[-h]	[-c	CONFIG]	[--sub]	[--interactive]	[--nofilt]  
																					[--splat	SPLAT] 
																					files	[files	...] 
 
Load	a	series	of	scans	from	a	config	file	and	preprocess	them,	or	
preprocess	a 
single	scan. 
 
positional	arguments: 
		files																	Single	files	to	preprocess  
 
optional	arguments: 
		-h,	--help												show	this	help	message	and	exit  
		-c	CONFIG,	--config	CONFIG 
																								Config	file 
		--sub																	Subtract	the	baseline	from	single	scans  
		--interactive									Open	the	interactive	display  
		--nofilt														Do	not	filter	noisy	channels  
		--splat	SPLAT									Spectral	scans	will	be	scrunched	into	a	single	
channel 
																								containing	data	in	the	given	frequency	range,	
starting 
																								from	the	frequency	of	the	first	bin.	E.g.	'0:1000'  
																								indicates	'from	the	first	bin	of	the	spectrum	up	
to 
																								1000	MHz	above'.	':'	or	'all'	for	all	the	
channels.	

� of �13 30

Internal Report n. 58 - Bachetti et al., SRT Single Dish Tools documentation

API	documenta1on	
Here	follows	the	detailed	description	of	the	API,	for	developers.	

srHools.core	package	

Submodules	

srHools.core.calibra1on	module	

Produce	calibrated	light	curves.	

SDTlcurve	 is	a	 script	 that,	 given	a	 list	of	 cross	 scans	 from	different	 sources,	 is	able	 to	
recognize	calibrators	and	use	 them	to	convert	 the	observed	counts	 into	a	density	 Slux	
value	in	Jy.	

	class	srttools.core.calibration.CalibratorTable(*args,	**kwargs)¶	
Bases:	srttools.core.calibration.SourceTable	

Class	containing	all	information	and	functions	about	calibrators.	

Initialize	the	object.	

	Jy_over_counts(channel,	elevation=None)¶	
	Jy_over_counts_rough(channel=None)¶	
Get	the	conversion	from	counts	to	Jy.	

Other	Parameters:	

channel	:	str	

Name	of	the	data	channel	

	calibrate()	
Calculate	the	calibration	constants.	

	check_not_empty()	
Check	that	table	is	not	empty.	

	check_up_to_date()	
Check	that	the	calibration	information	is	up	to	date.	

Returns: good	:	bool	

True	if	all	checks	pass,	False	otherwise.

Returns: good	:	bool	

True	if	all	checks	pass,	False	otherwise.

� of �14 30

Internal Report n. 58 - Bachetti et al., SRT Single Dish Tools documentation

	compute_conversion_function()	
Compute	the	conversion	between	Jy	and	counts.	

Try	to	get	a	meaningful	Sit	over	elevation.	Revert	to	the	rough	function	
Jy_over_counts_rough	in	case	statsmodels	is	not	installed.	

	counts_over_Jy(channel=None)	
Get	the	conversion	from	Jy	to	counts.	

	get_fluxes()	
Get	the	tabulated	Slux	of	the	calibrator.	

	plot_two_columns(xcol,	ycol,	xerrcol=None,	yerrcol=None,	ax=None,	channel=None,	
xfactor=1,	yfactor=1,	color=None)	
Plot	the	data	corresponding	to	two	given	columns.	

	show()	
Show	a	summary	of	the	calibration.	

	update()	
Update	the	calibration	information.	

	class	srttools.core.calibration.SourceTable(*args,	**kwargs)	
Bases:	astropy.table.Table	

Class	containing	all	information	and	functions	about	sources.	

Initialize	the	object.	

	from_scans(scan_list=None,	verbose=False,	freqsplat=None,	con<ig_<ile=None,	
no<ilt=False,	plot=True)	
Load	source	table	from	a	list	of	scans.	

	srttools.core.calibration.decide_symbol(values)	
Decide	symbols	for	plotting.	

Assigns	different	symbols	to	RA	scans,	Dec	scans,	backward	and	forward.	

	srttools.core.calibration.flux_function(start_frequency,	bandwidth,	coeffs,	
ecoeffs)	
Flux	function	from	Perley	&	Butler	ApJS	204,	19	(2013).	

	srttools.core.calibration.get_fluxes(basedir,	scandir,	channel='Ch0',	feed=0,	
plotall=False,	verbose=True,	freqsplat=None)	
Get	Sluxes	from	all	scans	in	path.	

	srttools.core.calibration.get_full_table(con<ig_<ile,	channel='Ch0',	feed=0,	
plotall=False,	pickle<ile=None,	verbose=True,	freqsplat=None)	
Get	all	Sluxes	in	the	directories	speciSied	by	the	conSig	Sile.	

	srttools.core.calibration.main_calibrator(args=None)	
Main	function.	

� of �15 30

http://docs.astropy.org/en/stable/api/astropy.table.Table.html%23astropy.table.Table

Internal Report n. 58 - Bachetti et al., SRT Single Dish Tools documentation

	srttools.core.calibration.main_lc_calibrator(args=None)	
Main	function.	

	srttools.core.calibration.read_calibrator_config()	
Read	the	conSiguration	of	calibrators	in	data/calibrators.	

	srttools.core.calibration.show_calibration(full_table,	feed=0,	plotall=False)	
Show	the	results	of	calibration.	

	srttools.core.calibration.test_calibration_roach()	
Test	that	the	calibration	executes	completely,	ROACH	version.	

	srttools.core.calibration.test_calibration_tp()	
Test	that	the	calibration	executes	completely.	

srHools.core.fit	module	

Useful	Sitting	functions.	

	srttools.core.fit.align(xs,	ys)	
Given	the	Sirst	scan,	it	aligns	all	the	others	to	that.	

	srttools.core.fit.baseline_als(x,	y,	lam=None,	p=None,	niter=10,	
return_baseline=False,	offset_correction=True,	outlier_purging=True)	
Baseline	Correction	with	Asymmetric	Least	Squares	Smoothing.	

	srttools.core.fit.baseline_rough(time,	lc,	start_pars=None,	
return_baseline=False)	
Rough	function	to	subtract	the	baseline.	

	srttools.core.fit.fit_baseline_plus_bell(x,	y,	ye=None,	kind='gauss')	
Fit	a	function	composed	of	a	linear	baseline	plus	a	bell	function.	

kind:	‘gauss’	or	‘lorentz’	

	srttools.core.fit.linear_fit(time,	lc,	start_pars,	return_err=False)	
A	linear	Sit	with	any	set	of	data.	Return	the	parameters.	

	srttools.core.fit.linear_fun(x,	q,	m)	
A	linear	function.	

	srttools.core.fit.minimize_align(xs,	ys,	params)	
Calculate	the	total	variance	of	a	series	of	scans.	

This	functions	subtracts	a	linear	function	from	each	of	the	scans	(excluding	the	Sirst	
one)	and	calculates	the	total	variance.	

	srttools.core.fit.objective_function(params,	args)	
Put	the	parameters	in	the	right	order	to	use	with	scipy’s	minimize.	

� of �16 30

Internal Report n. 58 - Bachetti et al., SRT Single Dish Tools documentation

	srttools.core.fit.offset(x,	off)	
An	offset.	

	srttools.core.fit.offset_fit(time,	lc,	offset_start=0,	return_err=False)	
A	linear	Sit	with	any	set	of	data.	Return	the	parameters.	

	srttools.core.fit.purge_outliers(y)	
	srttools.core.fit.ref_std(array,	window)	
Minimum	standard	deviation	along	an	array.	

srHools.core.global_fit	module	

Functions	to	clean	up	images	by	Sitting	linear	trends	to	the	initial	scans.	

	srttools.core.global_fit.counter()	
	srttools.core.global_fit.display_intermediate(scanset,	chan='Ch0',	feed=0,	
excluded=None,	par<ile=None,	factor=1)	
Get	a	clean	image	by	subtracting	linear	trends	from	the	initial	scans.	

Parameters:	

scanset	:	a	:class:ScanSet	instance	

The	scanset	to	be	fit	

Other	Parameters:	

chan	:	str	

channel	of	the	scanset	to	be	fit.	Defaults	to	"Ch0"	

feed	:	int	

feed	of	the	scanset	to	be	fit.	Defaults	to	0	

excluded	:	[[centerx0,	centery0,	radius0]]	

List	of	circular	regions	to	exclude	from	fi@ng	(e.g.	strong	sources	that	might	alter	the	total	rms)	

par?ile	:	str	

File	containing	the	parameters,	in	the	same	format	saved	by	_save_iteraFon	

	srttools.core.global_fit.fit_full_image(scanset,	chan='Ch0',	feed=0,	
excluded=None,	par=None)	
Get	a	clean	image	by	subtracting	linear	trends	from	the	initial	scans.	

Parameters:	

scanset	:	a	:class:ScanSet	instance	

The	scanset	to	be	fit	

Other	Parameters:	

� of �17 30

Internal Report n. 58 - Bachetti et al., SRT Single Dish Tools documentation

		

chan	:	str	

channel	of	the	scanset	to	be	fit.	Defaults	to	"Ch0"	

feed	:	int	

feed	of	the	scanset	to	be	fit.	Defaults	to	0	

excluded	:	[[centerx0,	centery0,	radius0]]	

List	of	circular	regions	to	exclude	from	fi@ng	(e.g.	strong	sources	that	might	alter	the	total	rms)	

par	:	[m0,	q0,	m1,	q1,	...]	or	None	

IniFal	parameters	–	slope	and	intercept	for	linear	trends	to	be	subtracted	from	the	scans	

srHools.core.histograms	module	

This	module	 contains	 a	 fast	 replacement	 for	 numpy’s	 histogramdd	 and	 histogram2d.	
Two	changes	were	made.	The	Sirst	was	replacing	

np.digitize(a,	b)	

with	

np.searchsorted(b,	a,	“right”)	

This	performance	bug	is	explained	on	https://github.com/numpy/numpy/issues/2656	
The	speedup	 is	around	2x	 for	big	number	of	bins	 (roughly	>100).	 It	 assumes	 that	 the	
bins	are	monotonic.	

The	other	change	is	to	allow	lists	of	weight	arrays.	This	is	advantageous	for	resampling	
as	 there	 is	 just	 one	 set	 of	 coordinates	 but	 several	 data	 arrays	 (=weights).	 Therefore	
repeated	computations	are	prevented.	

	srttools.core.histograms.histogram2d(x,	y,	bins=10,	range=None,	normed=False,	
weights=None)	
Compute	the	bi-dimensional	histogram	of	two	data	samples.	

� of �18 30

https://github.com/numpy/numpy/issues/2656

Internal Report n. 58 - Bachetti et al., SRT Single Dish Tools documentation

See	also	

histogram	
1D	histogram	
histogramdd	

Multidimensional	histogram	
Notes	

Parameters: x	:	array_like,	shape	(N,)	

An	array	containing	the	x	coordinates	of	the	points	to	be	“histogrammed".	

y	:	array_like,	shape	(N,)	

An	array	containing	the	y	coordinates	of	the	points	to	be	histogrammed.	

bins	:	int	or	[int,	int]	or	array_like	or	[array,	array],	optional	

The	bin	specificaFon:	

• If	int,	the	number	of	bins	for	the	two	dimensions	(nx=ny=bins).	
• If	[int,	int],	the	number	of	bins	in	each	dimension	(nx,	ny	=	bins).	
• If	array_like,	the	bin	edges	for	the	two	dimensions	(x_edges=y_edges=bins).	
• If	[array,	array],	the	bin	edges	in	each	dimension	(x_edges,	y_edges	=	bins).	
range	:	array_like,	shape(2,2),	optional	

The	leMmost	and	rightmost	edges	of	the	bins	along	each	dimension	(if	not	specified	
explicitly	in	the	bins	parameters):	[[xmin,	xmax],	[ymin,	ymax]].	All	
values	outside	of	this	range	will	be	considered	outliers	and	not	tallied	in	the	histogram.	

normed	:	bool,	optional	

If	False,	returns	the	number	of	samples	in	each	bin.	If	True,	returns	the	bin	density	
bin_count	/	sample_count	/	bin_area.	

weights	:	array_like,	shape(N,),	optional	

An	array	of	values	w_i	weighing	each	sample	(x_i,	y_i).	Weights	are	normalized	

to	1	if	normed	is	True.	If	normed	is	False,	the	values	of	the	returned	histogram	are	

equal	to	the	sum	of	the	weights	belonging	to	the	samples	falling	into	each	bin.	
Weights	can	also	be	a	list	of	(weight	arrays	or	None),	in	which	case	a	list	of	histograms	
is	returned	as	H.

Returns: H	:	ndarray,	shape(nx,	ny)	

The	bi-dimensional	histogram	of	samples	x	and	y.	Values	in	x	are	histogrammed	along	

the	first	dimension	and	values	in	y	are	histogrammed	along	the	second	dimension.	

xedges	:	ndarray,	shape(nx,)	

The	bin	edges	along	the	first	dimension.	

yedges	:	ndarray,	shape(ny,)	

The	bin	edges	along	the	second	dimension.

� of �19 30

Internal Report n. 58 - Bachetti et al., SRT Single Dish Tools documentation

When	normed	is	True,	then	the	returned	histogram	is	the	sample	density,	deSined	such	
that	the	sum	over	bins	of	the	product	bin_value	*	bin_area	is	1.	

Please	note	that	the	histogram	does	not	follow	the	Cartesian	convention	where	x	values	
are	on	the	abscissa	and	y	values	on	the	ordinate	axis.	Rather,	x	is	“histogrammed"	along	
the	Sirst	dimension	of	the	array	(vertical),	and	y	along	the	second	dimension	of	the	array	
(horizontal).	This	ensures	compatibility	with	histogramdd.	

Examples	

>>>	import	matplotlib	as	mpl 
>>>	import	matplotlib.pyplot	as	plt	

Construct	a	2D-histogram	with	variable	bin	width.	First	deSine	the	bin	edges:	

>>>	xedges	=	[0,	1,	1.5,	3,	5] 
>>>	yedges	=	[0,	2,	3,	4,	6]	

Next	we	create	a	histogram	H	with	random	bin	content:	

>>>	x	=	np.random.normal(3,	1,	100) 
>>>	y	=	np.random.normal(1,	1,	100) 
>>>	H,	xedges,	yedges	=	np.histogram2d(y,	x,	bins=(xedges,	yedges))	

Or	we	Sill	the	histogram	H	with	a	determined	bin	content:	

>>>	H	=	np.ones((4,	4)).cumsum().reshape(4,	4)  
>>>	print(H[::-1])		#	This	shows	the	bin	content	in	the	order	as	plotted  
[[13.		14.		15.		16.] 
	[9.		10.		11.		12.] 
	[5.			6.			7.			8.] 
	[1.			2.			3.			4.]]	

Imshow	can	only	do	an	equidistant	representation	of	bins:	

>>>	fig	=	plt.figure(figsize=(7,	3)) 
>>>	ax	=	fig.add_subplot(131) 
>>>	ax.set_title('imshow:	equidistant') 
>>>	im	=	plt.imshow(H,	interpolation='nearest',	origin='low',  
																extent=[xedges[0],	xedges[-1],	yedges[0],	yedges[-1]])	

pcolormesh	can	display	exact	bin	edges:	

>>>	ax	=	fig.add_subplot(132) 
>>>	ax.set_title('pcolormesh:	exact	bin	edges')  
>>>	X,	Y	=	np.meshgrid(xedges,	yedges) 
>>>	ax.pcolormesh(X,	Y,	H) 
>>>	ax.set_aspect('equal')	

NonUniformImage	displays	exact	bin	edges	with	interpolation:	

>>>	ax	=	fig.add_subplot(133) 
>>>	ax.set_title('NonUniformImage:	interpolated')  
>>>	im	=	mpl.image.NonUniformImage(ax,	interpolation='bilinear')  
>>>	xcenters	=	xedges[:-1]	+	0.5	*	(xedges[1:]	-	xedges[:-1])  

� of �20 30

Internal Report n. 58 - Bachetti et al., SRT Single Dish Tools documentation

>>>	ycenters	=	yedges[:-1]	+	0.5	*	(yedges[1:]	-	yedges[:-1])  
>>>	im.set_data(xcenters,	ycenters,	H) 
>>>	ax.images.append(im) 
>>>	ax.set_xlim(xedges[0],	xedges[-1]) 
>>>	ax.set_ylim(yedges[0],	yedges[-1]) 
>>>	ax.set_aspect('equal') 
>>>	plt.show()	

	srttools.core.histograms.histogramdd(sample,	bins=10,	range=None,	
normed=False,	weights=None)¶	
Compute	the	multidimensional	histogram	of	some	data.	

See	also	

Parameters: sample	:	array_like	

The	data	to	be	histogrammed.	It	must	be	an	(N,D)	array	or	data	that	can	be	converted	
to	such.	The	rows	of	the	resulFng	array	are	the	coordinates	of	points	in	a	D	
dimensional	polytope.	

bins	:	sequence	or	int,	optional	

The	bin	specificaFon:	

• A	 sequence	 of	 arrays	 describing	 the	 bin	 edges	 along	 each	
dimension.	

• The	number	of	bins	for	each	dimension	(nx,	ny,	...	=bins)	
• The	number	of	bins	for	all	dimensions	(nx=ny=...=bins).	
range	:	sequence,	optional	

A	sequence	of	lower	and	upper	bin	edges	to	be	used	if	the	edges	are	not	given	
explicitly	in	bins.	Defaults	to	the	minimum	and	maximum	values	along	each	

dimension.	

normed	:	bool,	optional	

If	False,	returns	the	number	of	samples	in	each	bin.	If	True,	returns	the	bin	density	
bin_count	/	sample_count	/	bin_volume.	

weights	:	array_like	(N,),	optional	

An	array	of	values	w_i	weighing	each	sample	(x_i,	y_i,	z_i,	...).	Weights	

are	normalized	to	1	if	normed	is	True.	If	normed	is	False,	the	values	of	the	returned	
histogram	are	equal	to	the	sum	of	the	weights	belonging	to	the	samples	falling	into	
each	bin.	Weights	can	also	be	a	list	of	(weight	arrays	or	None),	in	which	case	a	list	of	
histograms	is	returned	as	H.

Returns: H	:	ndarray	

The	mulFdimensional	histogram	of	sample	x.	See	normed	and	weights	for	the	different	
possible	semanFcs.	

edges	:	list	

A	list	of	D	arrays	describing	the	bin	edges	for	each	dimension.

� of �21 30

Internal Report n. 58 - Bachetti et al., SRT Single Dish Tools documentation

histogram	

1-D	histogram	
histogram2d	

2-D	histogram	
Examples	

>>>	r	=	np.random.randn(100,3) 
>>>	H,	edges	=	np.histogramdd(r,	bins	=	(5,	8,	4))  
>>>	H.shape,	edges[0].size,	edges[1].size,	edges[2].size  
((5,	8,	4),	6,	9,	5)	

srHools.core.imager	module	

Produce	calibrated	light	curves.	

SDTimage	is	a	script	that,	given	a	list	of	cross	scans	composing	an	on-the-Sly	map,	is	able	
to	calculate	the	map	and	save	it	in	FITS	format	after	cleaning	the	data.	

	class	srttools.core.imager.ScanSet(data=None,	nore<ilt=True,	con<ig_<ile=None,	
freqsplat=None,	no<ilt=False,	nosub=False,	**kwargs)	
Bases:	astropy.table.Table	

Class	containing	a	set	of	scans.	

Initialize	a	ScanSet	object.	

	analyze_coordinates(altaz=False)	
Save	statistical	information	on	coordinates.	

	calculate_images(scrunch=False,	no_offsets=False,	altaz=False,	calibration=None)	
Obtain	image	from	all	scans.	

	calibrate_images(calibration)	
Calibrate	the	images.	

	convert_coordinates(altaz=False)	
Convert	the	coordinates	from	sky	to	pixel.	

	create_wcs(altaz=False)	
Create	a	wcs	object	from	the	pointing	information.	

	find_scans_through_pixel(x,	y)	
Find	scans	passing	through	a	pixel.	

Parameters: scrunch	:	bool,	default	False	

Sum	all	channels	

no_offsets	:	bool,	default	False	

use	posiFons	from	feed	0	for	all	feeds

� of �22 30

http://docs.astropy.org/en/stable/api/astropy.table.Table.html%23astropy.table.Table

Internal Report n. 58 - Bachetti et al., SRT Single Dish Tools documentation

	fit_full_images(chans=None,	fname=None,	save_sdev=False,	scrunch=False,	
no_offsets=False,	altaz=False,	calibration=None,	excluded=None,	par=None)	
Fit	a	linear	trend	to	each	scan	to	minimize	the	scatter	in	the	image.	

	get_coordinates(altaz=False)	
Give	the	coordinates	as	pairs	of	RA,	DEC.	

	interactive_display(ch=None,	recreate=False)	
Modify	original	scans	from	the	image	display.	

	list_scans(datadir,	dirlist)	
List	all	scans	contained	in	the	directory	listed	in	conSig.	

	load(fname,	**kwargs)	
Set	default	path	and	call	Table.read.	

	load_scans(scan_list,	freqsplat=None,	no<ilt=False,	**kwargs)	
Load	the	scans	in	the	list	one	by	ones.	

	reprocess_scans_through_pixel(x,	y)	
Reprocess	interactively	all	scans	passing	through	a	pixel.	

	rerun_scan_analysis(x,	y,	key)	
Rerun	the	analysis	of	single	scans.	

	save_ds9_images(fname=None,	save_sdev=False,	scrunch=False,	no_offsets=False,	
altaz=False,	calibration=None)	
Save	a	ds9-compatible	Sile	with	one	image	per	extension.	

	update_scan(sname,	sid,	dim,	zap_info,	<it_info,	<lag_info)	
Update	a	scan	in	the	scanset	after	Siltering.	

	write(fname,	**kwargs)	
Set	default	path	and	call	Table.write.	

	srttools.core.imager.main_imager(args=None)	
Main	function.	

	srttools.core.imager.main_preprocess(args=None)	
Preprocess	the	data.	

srHools.core.interac1ve_filter	module	

Interactive	operations.	

	class	srttools.core.interactive_filter.DataSelector(xs,	ys,	ax1,	ax2,	
masks=None,	xlabel=None,	title=None)	
Bases:	object	

Plot	and	process	scans	interactively.	

� of �23 30

http://docs.python.org/3/library/functions.html%23object

Internal Report n. 58 - Bachetti et al., SRT Single Dish Tools documentation

Initialize.	

	align_all()	
Given	the	selected	scan,	aligns	all	the	others	to	that.	

	base(event)	
Add	an	interval	of	data	to	the	ones	that	will	be	used	by	baseline	sub.	

	on_click(event)	
Dummy	function,	in	case	I	want	to	do	something	with	a	click.	

	on_key(event)	
Do	something	when	the	keyboard	is	used.	

	on_pick(event)	
Do	this	when	I	pick	a	line	in	the	plot.	

	plot_all()	
Plot	everything.	

	print_info()	
Print	info	on	the	current	scan.	

Info	includes	zapped	intervals	and	Sit	parameters.	

	print_instructions()	
Print	to	terminal	some	instructions	for	the	interactive	window.	

	subtract_baseline()	
Subtract	the	baseline	based	on	the	selected	intervals.	

	subtract_model(channel)	
Subtract	the	model	from	the	scan.	

	zap(event)	
Create	a	zap	interval.	

	class	srttools.core.interactive_filter.ImageSelector(data,	ax,	fun=None)	
Bases:	object	

Return	xs	and	ys	of	the	image,	and	the	key	that	was	pressed.	

Attributes	

Initialize	an	ImageSelector	class.	

img (array)	the	image

ax (pyplot.axis	instance)	the	axis	where	the	image	will	be	plotted

fun (function)	 the	 function	 to	 call	 when	 a	 key	 is	 pressed.	 It	 must	
accept	three	arguments:	x,	y	and	key

� of �24 30

http://docs.python.org/3/library/functions.html%23object

Internal Report n. 58 - Bachetti et al., SRT Single Dish Tools documentation

	on_key(event)	
Do	this	when	the	keyboard	is	pressed.	

	plot_img()	
Plot	the	image	on	the	interactive	display.	

	class	srttools.core.interactive_filter.intervals	
Bases:	object	

A	list	of	xs	and	ys	of	the	points	taken	during	interactive	selection.	

Initialize.	

	add(point)	
Append	points.	

	clear()	
Clear.	

	srttools.core.interactive_filter.mask(xs,	border_xs,	invert=False)	
Create	mask	from	a	list	of	interval	borders.	

Parameters:	

xs	:	array	

the	array	of	values	to	filter	

border_xs	:	array	

the	list	of	borders.	Should	be	an	even	number	of	posiFons	

Returns:	

mask	:	array	

Array	of	boolean	values,	that	work	as	a	mask	to	xs	

Other	Parameters:	

		

invert	:	bool	

Parameters: data	:	array	

the	image	

ax	:	pyplot.axis	instance	

the	axis	where	the	image	will	be	ploWed	

fun	:	function,	optional	

the	funcFon	to	call	when	a	key	is	pressed.	It	must	accept	three	arguments:	x,	y	and	
key

� of �25 30

http://docs.python.org/3/library/functions.html%23object

Internal Report n. 58 - Bachetti et al., SRT Single Dish Tools documentation

Mask	value	is	False	if	invert	=	False,	and	vice	versa.	E.g.	for	zapped	intervals,	invert	=	False.	For	baseline	fit	
selecFons,	invert	=	True	

	srttools.core.interactive_filter.select_data(xs,	ys,	masks=None,	title=None,	
xlabel=None)	
Open	a	DataSelector	window.	

srHools.core.io	module	

Input/output	functions.	

	srttools.core.io.correct_offsets(derot_angle,	xoffset,	yoffset)	
Correct	feed	offsets	for	derotation	angle.	

	srttools.core.io.detect_data_kind(fname)	
Placeholder	for	function	that	recognizes	data	format.	

	srttools.core.io.mkdir_p(path)	
Safe	mkdir	function.	

Notes	

Found	at	http://stackoverSlow.com/questions/600268/mkdir-p-functionality-in-
python	

	srttools.core.io.print_obs_info_fitszilla(fname)	
Placeholder	for	function	that	prints	out	oberving	information.	

	srttools.core.io.profile_coords()	
Same	test	above,	with	proSiling.	

	srttools.core.io.read_data(fname)	
Read	the	data,	whatever	the	format,	and	return	them	as	an	Astropy	Table.	

	srttools.core.io.read_data_fitszilla(fname)	
Open	a	Sitszilla	FITS	Sile	and	read	all	relevant	information.	

	srttools.core.io.root_name(fname)	
Return	the	Sile	name	without	extension.	

srHools.core.read_config	module	

Read	the	conSiguration	Sile.	

	srttools.core.read_config.get_config_file()	
Get	the	current	conSig	Sile.	

Parameters: path	:	str	

Name	of	the	directory/ies	to	create

� of �26 30

http://stackoverflow.com/questions/600268/mkdir-p-functionality-in-python

Internal Report n. 58 - Bachetti et al., SRT Single Dish Tools documentation

	srttools.core.read_config.read_config(fname=None)	
Read	a	conSig	Sile	and	return	a	dictionary	of	all	entries.	

	srttools.core.read_config.sample_config_file(fname='sample_con<ig_<ile.ini')	
Create	a	sample	conSig	Sile,	to	be	modiSied	by	hand.	

srHools.core.scan	module	

Scan	class.	

	class	srttools.core.scan.Scan(data=None,	con<ig_<ile=None,	nore<ilt=True,	
interactive=False,	nosave=False,	verbose=True,	freqsplat=None,	no<ilt=False,	
nosub=False,	**kwargs)	
Bases:	astropy.table.Table	

Class	containing	a	single	scan.	

Initialize	a	Scan	object.	

Freqsplat	is	a	string,	freqmin:freqmax,	and	gives	the	limiting	frequencies	of	the	interval	
to	splat	in	a	single	channel.	

	baseline_subtract(kind='als')	
Subtract	the	baseline.	

	chan_columns()	
List	columns	containing	samples.	

	check_order()	
Check	that	times	in	a	scan	are	monotonically	increasing.	

	clean_and_splat(good_mask=None,	freqsplat=None,	noise_threshold=5,	
debug=True,	save_spectrum=False,	no<ilt=False)	
Clean	from	RFI.	

Very	rough	now,	it	will	become	complicated	eventually.	

Parameters:	

good_mask	:	boolean	array	

this	mask	specifies	intervals	that	should	never	be	discarded	as	RFI,	for	example	because	they	contain	spectral	
lines	

noise_threshold	:	Sloat	

The	threshold,	in	sigmas,	over	which	a	given	channel	is	considered	noisy	

freqsplat	:	str	

SpecificaFon	of	frequency	interval	to	merge	into	a	single	channel	

Returns:	

� of �27 30

http://docs.astropy.org/en/stable/api/astropy.table.Table.html%23astropy.table.Table

Internal Report n. 58 - Bachetti et al., SRT Single Dish Tools documentation

masks	:	dictionary	of	boolean	arrays	

this	dicFonary	contains,	for	each	detector/polarizaFon,	True	values	for	good	spectral	channels,	and	False	for	
bad	channels.	

Other	Parameters:	

		

save_spectrum	:	bool,	default	False	

Save	the	spectrum	into	a	‘ChX_spec’	column	

debug	:	bool,	default	True	

Save	images	with	quicklook	informaFon	on	single	scans	

	interactive_filter(save=True)	
Run	the	interactive	Silter.	

	interpret_frequency_range(freqsplat,	bandwidth,	nbin)	
Interpret	the	frequency	range	speciSied	in	freqsplat.	

	make_single_channel(freqsplat,	masks=None)	
Transform	a	spectrum	into	a	single-channel	count	rate.	

	save(fname=None)	
Call	self.write	with	a	default	Silename,	or	specify	it.	

	write(fname,	**kwargs)	
Set	default	path	and	call	Table.write.	

	zap_birdies()	
Zap	bad	intervals.	

	srttools.core.scan.contiguous_regions(condition)	
Find	contiguous	True	regions	of	the	boolean	array	“condition”.	

Return	a	2D	array	where	the	Sirst	column	is	the	start	index	of	the	region	and	the	second	
column	is	the	end	index.	

Notes	

From	http://stackoverSlow.com/questions/4494404/Sind-large-number-of-
consecutive-values-fulSilling-condition-in-a-numpy-array	

	srttools.core.scan.list_scans(datadir,	dirlist)	
List	all	scans	contained	in	the	directory	listed	in	conSig.	

Parameters: condition	:	boolean	array

Returns: idx	:	[[i0_0,	i0_1],	[i1_0,	i1_1],	...]	

A	list	of	integer	couples,	with	the	start	and	end	of	each	True	blocks	in	the	original	array

� of �28 30

http://stackoverflow.com/questions/4494404/find-large-number-of-consecutive-values-fulfilling-condition-in-a-numpy-array

Internal Report n. 58 - Bachetti et al., SRT Single Dish Tools documentation

srHools.core.simulate	module	

Functions	to	simulate	scans	and	maps.	

	srttools.core.simulate.save_scan(times,	ra,	dec,	channels,	<ilename='out.<its',	
other_columns=None,	scan_type=None)	
Save	a	simulated	scan	in	Sitszilla	format.	

	srttools.core.simulate.simulate_map(dt=0.04,	length_ra=120.0,	
length_dec=120.0,	speed=4.0,	spacing=0.5,	count_map=None,	noise_amplitude=1.0,	
width_ra=None,	width_dec=None,	outdir='sim/',	baseline='<lat')	
Simulate	a	map.	

Parameters: times	:	iterable	

Fmes	corresponding	to	each	bin	center	

ra	:	iterable	

RA	corresponding	to	each	bin	center	

dec	:	iterable	

Dec	corresponding	to	each	bin	center	

channels	:	{‘Ch0’:	array([...]),	‘Ch1’:	array([...]),	...}	

DicFonary	containing	the	count	array.	Keys	represent	the	name	of	the	channel	

?ilename	:	str	

Output	file	name

� of �29 30

Internal Report n. 58 - Bachetti et al., SRT Single Dish Tools documentation

	srttools.core.simulate.simulate_scan(dt=0.04,	length=120.0,	speed=4.0,	
shape=None,	noise_amplitude=1.0,	center=0.0)	
Simulate	a	scan.	

©	Copyright	2016,	Matteo	Bachetti	and	the	SRT	Imaging	team.	Last	updated	on	03	Aug	
2016.	Created	using	Sphinx	1.3.1.

Parameters: dt	:	Sloat	

The	integraFon	Fme	in	seconds	

length	:	Sloat	

Length	of	the	scan	in	arcminutes	

speed	:	Sloat	

Speed	of	the	scan	in	arcminutes	/	second	

shape	:	function	

FuncFon	that	describes	the	shape	of	the	scan.	If	None,	a	constant	scan	is	assumed.	
The	zero	point	of	the	scan	is	in	the	center	of	it	

noise_amplitude	:	Sloat	

Noise	level	in	counts	

spacing	:	Sloat	

Spacing	between	scans,	in	arcminutes	

baseline	:	str	

“flat”,	“slope”	(linearly	increasing/decreasing)	or	“messy”	(random	walk)

Parameters: dt	:	Sloat	

The	integraFon	Fme	in	seconds	

length	:	Sloat	

Length	of	the	scan	in	arcminutes	

speed	:	Sloat	

Speed	of	the	scan	in	arcminutes	/	second	

shape	:	function	

FuncFon	that	describes	the	shape	of	the	scan.	If	None,	a	constant	scan	is	assumed.	
The	zero	point	of	the	scan	is	in	the	center	of	it	

noise_amplitude	:	Sloat	

Noise	level	in	counts	

center	:	Sloat	

Center	coordinate	in	degrees

� of �30 30

http://sphinx-doc.org/

